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ABSTRACT 
 
Approximate theoretical methods can be successfully used for preliminary design of metal forming 
processes. In utilizing such methods, it is especially important to take into account the behaviour 
of the real functions that must exist where strong local effects are of importance. A typical example 
in this respect is the vicinity of frictional interfaces. It is known that the real velocity field next to a 
surface of maximum friction stress must generally involve non-differentiable functions when a 
class of rigid plastic models is adopted. The main idea of the method proposed by Orowan for 
plane strain rolling makes it very suitable for accounting for such solution behaviour. In the 
present paper a generalization of Orowan’s method to axisymmetric extrusion and drawing is 
developed. The asymptotic behaviour of the real velocity field in the vicinity of the friction surface 
is taken into account in the approximate method. Therefore, it is possible to evaluate the strain 
rate intensity factor and its dependence of process parameters. By assumption, this factor controls 
the evolution of material properties in a narrow layer in the vicinity of surfaces with high friction. 
Therefore, the method developed has a potential for its application to metal forming design driven 
by material properties in a thin sub-surface layer. 
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1. INTRODUCTION 
 
There are a number of methods used for finding approximate solutions for metal forming 
processes [1-3]. Each of these methods is applicable to a wide class of processes. In contrast to 
these methods, the approach [4] was specifically developed for plane strain rolling. This approach 
has been successfully adopted for describing the rolling process of various materials [5-9]. 
Solutions obtained by the approach [4] are used to control the accuracy of other approximate 
solutions [10, 11]. It is therefore of interest to extend the approach to other metal forming 
processes. Also, the original paper [4] has mainly dealt with stress equations. In many cases, 
however, it is more important to determine an accurate through thickness distribution of the 
velocity field because it has a great effect on the distribution of material properties. A typical 
example is the formation of a layer of intensive plastic deformation in the vicinity of frictional 
interfaces [12]. It is known that theoretical solutions based on several rigid plastic models are 
singular in the vicinity of maximum friction surfaces [13-15]. In particular, the equivalent strain 
rate approaches infinity near such interfaces. Such behaviour of the equivalent strain rate allows 
one to introduce the strain rate intensity factor [13]. This factor is involved in several models for 
describing the evolution of material structure in a narrow layer near frictional interfaces [16, 17]. 
Therefore, the theoretical results [13-15] can adequately reflect material behaviour in a narrow 
layer near interfaces with high friction. However, numerical techniques should directly account for 
the singularity in solution behaviour. In particular, commercial codes cannot be used to calculate 
the velocity fields in the vicinity of maximum friction surfaces that follow from the exact 
equations of rigid plastic models considered in [13-15]. Therefore, the approach [4] enriched with 
a procedure for finding the velocity field can provide an efficient tool for this kind of problems. 
The present paper concerns with the distribution of the equivalent strain rate and the strain rate 
intensity factor in axisymmetric extrusion and drawing of a round rod through a die of arbitrary 
shape.  
 
 
2. GENERAL THEORY 
 
Geometry of the process of axisymmetric extrusion/drawing of a round rod is illustrated in Figure 
1. It is convenient to introduce the cylindrical coordinate system r z  shown in Figure 1. The z-
axis coincides with the axis of symmetry. The plane 0z  corresponds to the exit cross-section.  
The shape of the die is known and, therefore, the function h(z) is given with h(0)= and h(L)=b. It 
is assumed that 0dh dz  in the range 0<z<L. Here a is the radius of the rod at the exit and b is 

its radius at the entrance. In the case of extrusion Q=0 and in the case of drawing P=0. The 
maximum friction law is supposed on the surface r=h(z). In the case of rigid perfectly/plastic 
material considered in the present paper this law states that the friction stress at sliding is equal to 
the shear yield stress k. The method proposed in [4] consists of two main steps. The first step is to 
solve a boundary value problem for a representative element for determining the distribution of 
field variables within a generic cross-section. The second step is to use this solution for finding the 
distribution of the field variables along the plastic zone (along the axis of symmetry in the case 
under consideration). For plane strain rolling, Prandtl’s solution for compression of a block 
between parallel platens and its generalization have been adopted as stress solutions for the 
representative element in [4]. An axisymmetric analogue to Prandtl’s solution, extrusion from a 
contracting cylindrical container, has been considered in [18]. This solution can be used in 
conjunction with Orowan’s method to deal with axisymmetric extrusion/drawing processes of 
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round rods. In particular, it can serve as the solution for the representative element shown in Figure 
2. For finding the strain rate intensity factor it is sufficient to consider the velocity solution. The 
velocity field in the cylindrical coordinates is given by [18]  
 

2

2

2
, 2 3 1     r zu ur z r

C
U h U h h

      (1) 

 
where ru  is the radial velocity and zu  is the axial velocity. The solution (1) satisfies the boundary 

conditions 0ru  at 0r  (axis of symmetry) and  ru U  at r h  (maximum friction surface).  

 

 

Figure 1 - Geometry of the process  Figure 2 - Representative element 
 
Using the velocity field (1) the components of the strain rate tensor in the cylindrical coordinates 
can be found in the following form 
 

2 2

2 3
, , ,     


rr zz rz

U U U Ur

h h h h h r
            (2) 

 
In the original solution U and h are prescribed constants and C is a constant of integration. 
However, in accordance with Orowan’s method, it is necessary to assume that all of these 
quantities are functions of z. Thus (1) predicts the through thickness distribution of the velocity 
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field at a generic cross-section of the plastic zone (Figure 1) and it can be rewritten, with no loss of 
generality, in the form 
 

2

2
, 2 3 1    r zu ur r

A
U h U h

               (3) 

 
where A is a function of z to be found from the solution. It is possible to verify by inspection that 
(2) near the surface r h  follows the general asymptotic behaviour of the velocity field near 
maximum friction surfaces [13]. The direction of flow at r h  requires that 0A . 
Assume that the volume flux q is given, and consider a generic cross-section within the plastic 
zone whose radius is r h . Let  hz z  for this cross-section. Then, in the case of incompressible 

materials 
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Substituting (3) into (4) gives 
 

2 4

3

 
  

 
q Uh A         (5) 

 
This equation provides one relation between U and A. The other relation can be obtained by 
considering the direction of the actual velocity vector u and the components of the velocity vector 
from the solution for the representative element, ru  and zu , at the friction surface  r h z . It 

follows from Figure 3 that  
 

cot


 h
z z z

u

U
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Figure 3 – Components of the velocity vector 
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Substituting (3) into (6) and taking into account that 0A  gives cot  A . Then, it follows 

from (5) that 
 

1

2

4
cot

3
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q
U

h

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                   (7) 

 
Since  h z  and  z  are completely determined by geometry of the die, U as a function of z 

immediately follows from (7).  
A series expansion of the equivalent strain rate in the vicinity of maximum friction surfaces is [13] 
 

1
, 0

 
   
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eq

D
o s

s s
        (8) 

 
where s is the normal distance from the friction surface, D is the strain rate intensity factor, and the 
equivalent strain rate is expressed in terms of the components of the strain rate tensor ij  in the 

form 
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Substituting (2) into (9) gives 
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In the case under consideration  s h r . Therefore, comparing (8) and (10) and using (7) results 
in 
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For illustration of the result obtained it is convenient to introduce the dimensionless strain rate 
intensity factor in the form 
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3. EFFECT OF DIE SHAPE ON THE STRAIN RATE INTENSITY 
FACTOR 

 
Assume that a, b and L are fixed (Figure 1). Then, different process conditions can be obtained by 
varying the shape of the die. The simplest die is conical. In this case the angle  is constant (Figure 
2) and  

tan



b a

L
          (13) 

Then, 

  tan h z a z          (14) 

 
Substituting (13) and (14) into (12) gives 
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It is assumed now that the shape of the die is given by a polynomial of second order 
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It is obvious from (16) that  0 h a  and   h L b . The condition 0dh dz  is satisfied if 
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It follows from (16) that 
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Substituting (16) and (18) into (12) gives 
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4. NUMERICAL RESULTS 
 
Let 1 2a b  and 3L b . Then, as follows from (17), two extreme cases of die geometry are 

obtained at 0b  and 1b . In the case of 0b , the tangent to the die is parallel to the z-

axis at the exit cross-section. In the case of 1b , the tangent to the die is parallel to the z-axis 
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at the entrance cross-section. The variation of the strain rate intensity factor with z L  for these 

two extreme cases found with the use of (19) as well as for the conical die found by means of (15) 
is depicted in Figure 4. The curve 1 corresponds to the conical die, curve 2 to the die with 0b  

and curve 3 to the die with 1b . Geometry of the dies is illustrated in Figure 5.  

 

 

 
Figure 4 - Variation of the strain rate intensity 

factor  
Figure 5 - Geometry of the dies 

 
It is seen from Figure 4 that the strain rate intensity factor significantly varies along the friction 
surface. This dependence may or may not be monotonic. Geometry of the die strongly influences 
the magnitude of the strain rate intensity factor giving a room for process design driven by the 
quality of a narrow sub-surface layer. To this end, it is of course necessary to use a theory that 
relates the magnitude of the strain rate intensity factor to the evolution of parameters 
characterizing material properties. The sensitivity of the magnitude of the strain rate intensity 
factor to die geometry is illustrated in Figure 6. In this figure solid curves 1, 2 and 3 coincide with 
the curves shown in Figure 4. The dashed curves correspond to several values of b  of the 

interval (17).  
It is seen from Figure 6 that a small variation of die shape results in a significant change in the 
magnitude of the strain rate intensity factor. Finally, to illustrate an effect of the billet radius on the 
magnitude of the strain rate intensity factor at the same radius of the product and the value of L, it 
is assumed that 6L a . Varying the value of a b  the magnitude of the strain rate intensity factor 

has been calculated for the conical die according to (15). The result is shown in Figure 7. It is seen 
from this figure that the magnitude of the strain rate intensity factor is also very sensitive to the 
radius of the billet. 
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Figure 6 - The sensitivity of the magnitude of 
the strain rate intensity factor to die geometry 

Figure 7 - The sensitivity of the magnitude of 
the strain rate intensity factor to billet radius  

 
 
5. CONCLUSIONS 

 
The method proposed in [4] for plane strain rolling has been extended to axisymmetric extrusion 
and drawing of round rods. The main purpose of the present paper is to use the new method for 
finding the strain rate intensity factor. Since this factor is associated with the singular velocity field 
(8), it is important that the method is based on the exact solution for the representative element 
(Figure 2). For this reason, the particular solution (10) satisfies the general asymptotic 
representation of the equivalent strain rate (8) and, therefore, the strain rate intensity factor can be 
evaluated from the approximate solution. Several illustrative examples (Figures 4 to 7) 
demonstrate that the magnitude of the strain rate intensity factor is sensitive to process parameters, 
including geometry of the die. It is therefore expected that the method can be used for the process 
design driven by the quality of a narrow sub-surface material layer. To this end, it is of course 
necessary to adopt models which relate the magnitude of the strain rate intensity factor and the 
evolution of parameters characterizing material properties. Such models have been proposed, for 
instance, in [16, 17]. It is straightforward to further extend the method to treat extrusion of tubes 
on a mandrel. To this end it is sufficient to replace the velocity field (1) with the general velocity 
field found in [19] where, however, the appropriate boundary condition (maximum friction law) 
has to be taken into account.  
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REZIME 

 
Približne teorijske metode uspešno se mogu koristiti za preliminarno planiranje procesa 
oblikovanja metala. Prilikom korišćenja ovih metoda, naročito je važnosti uzeti u obzir ponašanje 
realnih funkcija koje moraju postojati na mestima gde su lokalni efekti izraženi. U tom smislu, 
tipičan primer je oblast u kojoj se javlja kontaktno trenja. Poznato je da se stvarno polje brzine 
neposredno pored površine sa maksimalnim trenje, u slučaju kada se koristi model kruto 
plastičnog tela, obično definiše preko ne-diferentabilnih funkcija. Osnovna ideja metode 
predložene od strane Orovana za ravansko deformaciono stanje pri valjanju, upravo je pogodna 
za opisivanje ovakvih stanja, i u ovom radu ta metoda je primenjena na procese osno-simetričnog 
izvlačenja i istezanja. Asimptotsko ponašanje stvarnog polja brzine u oblasti u kojoj se javlja 
trenje je uzeto u obzir kod približne metode. Stoga je moguće proceniti intenzitet faktora brzine 
deformacije i njegovu zavisnost od parametara procesa. Po pretpostavci, ovaj faktor utiče na 
osobine materijala u uskom sloju u oblasti površine sa visokim trenjem. Zbog toga se ova metoda 
može potencijalno primeniti pri projektovanju procesa oblikovanja metala koji zavise od osobina 
materijala u tankom sloju neposredno ispod površine. 
Ključne reči: Orovanova metoda, polje brzine, osnosimetrično izvlačenje i istezanje 
 
 


