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ABSTRACT 
 

In this paper stress state was determined for tubular billets, using differential equations for 
equilibrium of volume element and conditions of plastic flow within the restrictions of ratio 
between normal and tangential stresses on outer and inner surface. 
Experimental investigations of forming tubular billets are entirely in conformance with FEM 
numerical simulation which was done using CAMPform 2D software.  
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1. INTRODUCTION 
 
Analysis of stress state is shown on an example of forming of a tubular billet. The aim of this 
experimental investigation is to verify theoretical assumptions as well as to identify basic process 
parameters. Maintaining stability of the forming process often requires analysis of stress-strain 
state along the deformation zone. The magnitude of flow stress can be determined either 
experimentally or by solving a system of volumetric stress state equations for characteristic 
locations of the deformation zone.  
One of essential theoretical methods for determination of stress state in a specific cross-section of 
a deformed tubular element - which requires knowledge of material properties (factor of 
hardening) - is the method of solving differential equations of equilibrium for the state of plastic 
flow. This method also requires boundary conditions expressed as the ratio between outer- and 
inner-wall stresses of the deformed billet. 
The differential equations of stress state are often complex, which is why certain simplifications 
are introduced. These simplifications depend on the billet dimensions and shape of the tool which 
defines the forming process in the experiment. 
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2. STRESS STATE OF VOLUME ELEMENT IN CHARACTERISTIC  
    CROSS-SECTIONS ALONG DEFORMATION ZONE 
 
Using tubular billet shown in Fig. 1 coordinate grid was created by segmenting billet height and 
circumference. The billet underwent deformation causing the grid to distort as the result of the 
distortion of the volume element  in various increments along the deformation zone.  
The predominant stress state in the volume element undergoing necking is a combination of three 
upsetting stresses. 
Maximum deformation within the deformation zone is the radial upsetting which leads to wall 
thickening.  Measurements have shown that the wall thickening is largest at the fillet radius where 
the spherical section transforms into the conic section (zone 4). Going further towards the end of 
the conic section, wall thickness starts to decrease regardless of the continuous diameter reduction, 
i.e. progressive necking.  
This implies that, under forming, the material acts like a viscous medium, undergoing certain 
amount of relaxation at the end of the deformation zone, which results in reduced wall thickness. 
 

 
  

Figure 1 - Distortion of the deformation zone on the billet 
 

Figure 2 shows a diagram of a two-part tool engaging the billet during forming. The normal 
component of the necking force Fsu and the contact frictionμ, generate friction force Ft via shaping 
rings. The friction force causes stress state in the cylindrical section of the billet which is sufficient 
to provide instability, i.e. forming of the spherical section (the necking phase) [1], [2]. This force 
causes the reduction of billet cross-section, which results in an axial-symmetrical upsetting stress 
state. The shape of the deformation zone influences the stress-strain state as well as the boundaries 
of the forming process.  
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Figure 2 - Forming of axial instability during deformation phases 
 

The stress state in a combined forming process of necking and expanding  can be reviewed 
through phases of the deformation zone, as shown in Fig..2: 

1 - free upsetting zone of the cylindrical section of the tubular billets  
2 -deformation zone outside the contact area 
3 -necking zone in the spherical section of the necking ring 
4 -bending zone on the radius 
5 -necking zone in the conical section 

 
Volume element on the cylindrical section of the tubular workpiece (z1) shown in Fig. 3 is loaded 
with force F1 which is offset by λ from the axis. This load can be decomposed into a concentric 
force F1 and a bending torque M1 = F1 ⋅λ. acting in the longitudinal cross-section plain. 
The magnitude and the character of the load p (z1) can explain the occurrence of the double bulge 
on the cylindrical section, visible on the defective workpiece in Fig. 2. One concludes that proper 
transformation of the cylindrical section into spherical shape depends on the magnitude of force F1 
and length z1 for certain parameters and type of material of steel tubular billets.  
From the condition of force equilibrium in a tubular element loaded with torque M1, we have: 
 

1
1

1 1 1

2M
q( z )

( z - dz ) dz
=

×
       (1) 

 
or, expressed as p(z1) per unit area on length (z1) 
 

1
1

12
q( z )

p( z )
r π

=
⋅

        (2) 

 
 Substituting M1 = F1 ⋅λ. and su1 FF =  there follows: 
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π⋅ − ⋅

       (3) 

 
which acts on the inner side, causing instability of the cylindrical section of the workpiece shown 
in Fig. 2. a, b, c. 
From the condition of equilibrium of radial forces in a volume element (Fig. 3.), there follows: 
 

1
1 1 1 1 1 1 12 0

2
d

p( z ) r dz d s dz sinϕ
ϕ

ϕ σ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ =      (4) 

 
which leads to conclusion that the ratio of radial and circular stresses equals: 
 

1
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p( z )

rϕσ= ⋅ .         (5) 

 

 
 

 
Figure 3 - Load approximation for the cylindrical section of the workpiece and the stress state of 

the volume element whose length is dz1 
  
From the condition of equilibrium of axial forces there follows:     
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z
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π
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        (6) 

 
Based on the experimental example of forming tubular workpieces, we can establish the 
magnitude of the necking force from the diagram of force change which signals the beginning of 
formation of the spherical section in the middle part of the cylindrical section of the deformation 
zone. Thus we derive σz1= -374.2  Mpa.  
If σz1 and σϕ1  are the main normal stresses, according to the hypothesis of maximum shear stress, 
plastic forming occurs when 1T11z k==− σσσ ϕ , that is : 
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By equalizing values F1=Fsu of stress p(z1) and using the condition of flow and condition of 
equilibrium, we derive dependence of length z1 (initial forming of axial instability as the function 
of deformation force, hardening coefficient  k1, axial stress σz1 and wall thickness s1 ) in the 
following form:  
 

 1 1 1
1 1 1

su

z

F
( z dz ) dz

( k ) s
λ

π σ
⋅

− ⋅ =
− ⋅

      (8) 

 
The stress state is defined assuming that (z1- dz1) dz1 > 0, that is, dz1 > 0 and dz1 < z1. 
The length of the free upsetting zone, i.e. the zone of contactless forming which occurs at a certain 
stage of the necking process, is an important factor in solving the problem of stabile forming of 
workpieces with similar dimensions. 
At the end of the cylindrical section of the billet, there begins a contactless bending for the angle α 
with radius R2, which is the function of wall thickness and billet diameter. The zone of contactless 
forming ( 2 ) (see Fig. 2.) occurs at a certain distance from the beginning of the contact necking, 
and its length depends primarily on mechanical properties of workpiece material. Disregarding the 
contactless zone can lead to errors in calculation of necking stress. The length of the contactless 
zone is determined between points of contact with spherical tool and the transition into cylindrical 
section of the tube (Fig. 2). 
 

 
 

Figure 4 - Stress state in the contactless zone 
 
From the stress equilibrium equation in the contactless zone in the direction of the meridian plain 
which is normal to the bending radius (Fig. 4), there follows:   
 

 2
2 2 2 2 2 2 2 2 2 2 2 2 2 22 0

2z z z
d

( d ) r d s ( r dr )d s sin R d sϕ
γ

σ σ ϕ σ ϕ σ α+ ⋅ − − ⋅ − ⋅ =  (9) 
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Introducing substitutions in the above equation:  
 

 2 2 2 2 2 2

2 22 2
d r d ( r dr )d

sin
R d

γ ϕ ϕ
α

− −
=

⋅
       (10) 

 
and disregarding higher order members, we derive the stress state equation: 
 
 2 2 2 2 2 2 0z zd r dr drϕσ σ σ⋅ + − =       (11) 

  
which can be written as:  
 

2 22

2 2
0zzd

dr r
ϕσ σσ −

+ =        (12) 

 
This equation satisfies the condition of plastic flow according to criterion of highest shear stress 
for volumetric load (Tresca-Saint Venant criterion) according to which plastic forming occurs 
when the difference between maximum and minimum principal normal stress reaches the flow 

boundary 2 2 2z kϕσ σ− = . We arrive at the following equation of stress state: 2 2

2 2
0zd k

dr r
σ

− =  which 

represents the Cauchy problem, where r2 is an independent variable, σz2 is dependent variable,  
dσz2/ dr2 is a derivative of a dependent variable with respect to an independent variable, k2  is a 
constant (deformation strengthening) at the deformation zone boundary and (σz1, R1 ) are the 
values which should be contained in the particular solution of the equation. General solution is: 
 

2 2 2z k ln r lnCσ = ⋅ +         (13) 
 

that is 22 2
k

z lnC rσ = ⋅  where C is a free constant calculated from 
2 12 1z ( r R ) zσ σ= = . 

The solution of the Cauchy problem is: 
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Upon inserting numerical values R1 = 16  mm, r2  = 15, 32 mm, k2 = 495 MPa  we derive:  
 

2

495

2
16374 20

15 32z ( R ) , ln = - 395,7 Mpa
,

σ ⎛ ⎞= − − ⎜ ⎟
⎝ ⎠

    (15) 

 
After contactless bending there exists a zone of spherical necking in which appears an additional 
pressure p3 of the necking ring at the outer side of the workpiece, creating a component of normal 
stress 33p ρσ=  (Fig. 5), which in combination with friction coefficient μ results in stress τ3 on the 
contact surface. From the equation of equilibrium of stresses in the meridian plain, in the 
tangential direction we have: 
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Figure 5 - Stress state of volume element in 
spherical necking zone 

 
 

Figure 6 - Stress state of volume element in 
bending zone across the fillet radius r 

 
If, in the above equation, we make a substitution:  3 1

2
d

cos
ϕ

≅ ; 3 3 3 3 3

3 3 32 2 2 2
d dr d d dr

sin
r d r

ϕ ϕ ϕ
ϕ

⋅
= ≅ =

⋅
 

 
and disregard higher order members, there follows  
 
 3 3 3 3 3 3 3 3 3 3 3 3 0z zd r s dr s r dr s drρ ϕσ σ μ σ σ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ =    (17) 
 
if, according to maximum shear stress hypothesis 3 3 3z kϕσ σ− = , then for the necking in the 
deformation zone 3, there follows the equation of stress state in the following form:  
 

3
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3 3 3

1 1 0z
z
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This is a first-order linear differential equation whose general solution is: 
 

 3
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k
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μ
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where (C ) is a free constant which can be found from the initial conditions. The solution of the 
Couchy problem is: 
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Values μ = 0,095, R2  = 15, 32 mm, r3  = 13,75 mm and k3 = 503 MPa define dimensions and 
mean value of hardening on the section of the deformation zone to which the equation applies. 
When these values are fed into the solution of the Cauchy problem, we derive values of axial 
stress: σz3= - 447.1 MPa 
Stresses which occur due to bending and friction resistance (Fig.6) are determined from the 
condition of equilibrium along tangent in the meridian plane: 
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If, in the above equation, we disregard higher order members and suppose that:  
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while 44p ρσ= , there follows equation of stress state in the following form: 
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From the condition of equilibrium in radial direction: 
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we derive dependence between radial and circular stresses in the following form: 
 

4 4 4 4 0p r sϕσ⋅ − ⋅ = ;  4
4 4

4

s
p

rϕσ= ⋅      (25) 

 
This equation satisfies condition of plastic flow according to criterion of maximum shear stress for 
a volumetric load (Tresca-Saint Venant criterion) according to which plastic forming occurs when 
the difference between maximum and minimum principal normal stress reaches the flow stresses 

4 4 4z kϕσ σ− = . 

Rearanging gives: 4
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σ μσ μ− ⋅ + ⋅ ⋅ + = . This is a first-order linear differential 

equation with following solution: 
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Substituting μ = 0,095, R3 = 13,75 mm, r4  = 12, 7 mm and k4 = 516 MPa, which define 
dimensions and mean value of hardening on the section of the deformation zone to which the 
equation applies, we derive axial stress σz4= - 482,6 Mpa.  
Due to the size of the cone angle, the deformation of material in the conic section of the necking 
ring is not stationary by nature. This accounts for the increase in necking force due to higher 
stress. Stresses p5 on the contact surface (Fig. 7) generates friction force τ5=μ p5. 
 

 
 

Figure 7 - Stress state of volume element in the zone of conical necking 
 
Equilibrium of stress state for a volume  element in tangent direction in the meridian plane is given 
by following equation:  
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Supposing geometric dependency in a volume element: 
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52 2 2
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ϕβ β ⋅
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According to the hypothesis of maximum shear stress, 5 5 5z kϕσ σ− = , so for the case of necking 
in the deformation zone ( 5 ) we derive following equation of stress state: 
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After rearrangement:  
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This is a first-order linear differential equation with following solution: 
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Substituting values  μ = 0,095, R4  = 12, 7 mm, r5  = 12, 25 mm and k5 = 521 MPa, which pertain 
two dimensions and a mean value of hardening factor in the section of the deformation zone which 
is defined by the differential equation, we derive maximum stress: σz5= - 515,1  MPa    
The magnitude of radial stresses along deformation zone depends on the wall width/diameter ratio 
s0 / D 0. From the equation of stress equilibrium in radial direction: 
 

 5
5 5 5 5 5 5 52 0
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p r d dz sin s dzϕ
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ϕ σ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ =     (31) 

we derive dependences between radial and circular stresses in the form of: 5
5 5

5

s
p

rϕσ= ⋅ . 

Compared to axial and circular stresses, the magnitude of radial stresses is lower and depends on 
the wall thickness and billet diameter, so radial stresses can be disregarded when the tube is drawn 
through the necking ring [3]. This ratio between radial and circular stresses is proportional to wall 
thickness and radius (or diameter, in certain phases) ( si /ri ),  and it ranges between (10÷30)%  
from zone (1 ) to zone ( 5 ). This must be taken into consideration during stress state analysis, 
bearing in mind the sensitivity of the process to instabillity of forming. Fig. 8 shows the stress 
diagram obtained by solving differential equations of equilibrium state in characteristic zones. 
 

 
 

Figure 8 - Approximation of stresses obtained by solving differential equations along the 
deformation zone 
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3. COMPARISON OF RESULTS OBTAINED BY SOLVING 
DIFFERENTIAL EQUATIONS AND FEM SIMULATION 

 
The numerical simulation of the necking of seamless steel pipe billets was conducted in 
CAMPform 2D software package, dedicated to FEM analysis of 2D processes. The software was 
develpoed at the KAIST Institute (Korea Advanced Institute of Science and Technology), Taejon. 
Software packages CAMPform 2D and 3D are made for simulation of bulk forming processes 
(forging, cold and warm extrusion, rolling...). The processor is based on thermo-solid-viscoplastic 
finite elements which were developed by Kobayashi et al. [4], [5], [6]. This approach in fact 
incorporates methods for solving equilibrium equations and the energy equation, based on the 
solid-viscoplastic constituent model with von Mises flow criterion. Finally, it would be useful to 
compare deformation and stress fields obtained by FEM analysis with the analysis results obtained 
in this paper, by solving differential equations.  
Given in Fig. 9 is the stress diagram along the meridian cross-section with a predominantly 
upsetting stress state caused by the axial and circular stresses in the course of the necking process. 
This justifies the use of CAMPform numerical simulation to model the forming of axisymmetrical 
tubular billets of similar dimensions. 
   

 
 

Figure 9 - Stress diagram of equilibrium state in the meridian section, obtained by FEM 
simulation 

 
 
4. CONCLUSION 

 
The comparison between the results obtained by FEM simulation of the process, i.e. the stress 
fields over the entire deformation zone of the tubular billet, shows satisfactory compliance with 
the stress fields obtained by solving the equilibrium differential equations in the characteristic 
zones. 
Considering the results obtained by experiments on an example, which has broad practical 
application, the solutions obtained by numerical FEM model can be of practical assistance in 
solving similar problems, such as necking and expanding or a combination of the two used in the 
forming of tubular billets. 
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REZIME 
 

Analiza naprezanja, odnosno naponskog stanja je prikazana na primjeru obrade deformisanjem   
cijevnog izratka koji je predmet eksperimentalnih istraživanja iz razloga provjere pravilnosti 
teorijske postavke kao i identifikacije osnovnih parametara procesa. Za stabilnost procesa  
oblikovanja izratka često je neophodno  izvršiti analizu naponsko deformacionog stanja duž zone 
deformisanja. Veličinu napona tečenja je moguće odrediti eksperimentalno ili rješavanjem 
jednačina naponskog stanja elemenata volumena na karakterističnim mjestima deformacione 
zone.  
U radu je izvršeno  određivanje naponskog stanja kod obrade cijevnih izradaka uz korišćenje 
diferencijalnih jednačina ravnoteže elementa volumena i uslova  plastičnog tečenja u okvirima 
ograničenja odnosa normalnih i tangencijalnih napona na vanjskoj odnosno unutrašnjoj površini. 
Izvedena eksperimentalna istraživanja na deformisanju cijevnih izradaka su u potpunosti 
potvrđena (FEM) numeričkom simulacijom  korišćenjem programskog paketa CAMPform 2D u 
Windows okruženju.  
KLjučne reči: naponsko stanje, Cevasti pripremci, Diferencijalne jednačine, FEM simulacija 
 
 


