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ABSTRACT 
 
In this paper, the finite volume method (FVM) is used to calculate process parameters during 
extrusion of metals. FVM is applied on two-dimensional orthogonal grids and collocated variable 
arrangement. The application of the FVM is done in case of solving the plastic flow during 
extrusion processes with different boundary conditions. The method of involving of the most 
frequently used friction models, Coulomb’s friction and constant friction law into the finite volume 
method algorithm is presented. The Eulerian description of motion to analyze of the metal flow is 
used. The obtained numerical results are in agreement with the theoretical considerations. 
Key words: Finite Volume Method, Extrusion, Friction modelling, Coulomb’s friction, Constant 
friction law. 
 
 
1. INTRODUCTION 
 
Friction is one of the most important problems in metal forming processes. It is a complex and 
hardly understood and controlled phenomenon. Due to the high pressures and temperatures, 
surface quality and lubrication properties, it is extremely difficult to perform the friction value and 
its influence on considered metal forming technology. Consequently, most information on friction 
phenomena is obtained by studying the workpiece surface after metal forming. These studies 
render some insight into the mechanisms that govern friction but do not supply sufficient 
information to specify the constitutive relations that can be applied to model friction in a forming 
analysis [1,2,13-15].  
Therefore, the different friction laws are developed in order to describe the friction influence on 
the plastic metal flow during metal forming processes [9,11,14]. In this paper, the Coulomb’s and 
the constant friction law are compared in the FVM algorithm for extrusion process simulation.  
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2. MATHEMATICAL MODEL 
 
The most popular method used for simulation of the bulk metal forming processes is finite element 
method (FEM) [2,11,12,14]. But extrusion technologies are metal forming processes with severe 
and large plastic deformation. If the FEM is used to simulate extrusion process, mesh always 
distorts quickly and frequent remeshing is needed. In this paper, finite volume method (FVM) 
based on the Eulerian mesh is used to calculate relevant parameters of extrusion process. The finite 
volume method has dominated computational fluid dynamics for many years and has recently 
emerged as a viable numerical method for stress analysis in solid structures [6,7]. 
 
The process of cold extrusion can be described by flow formulation, which uses the velocity as 
dependent variables and governed by the following momentum and mass balance equations: 
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which are valid for an arbitrary part of continuum of the volume V bounded by the surface S, with 
surface vector nj (j = 1, 2, 3) pointing outwards. In equations (1) and (2) ρ represents the density, 
ui (i = 1, 2, 3) is the velocity vector and σij (i = 1, 2, 3; j = 1, 2, 3) is the stress tensor.  
 
In the simulation of extrusion processes, it is common to use a rigid-(visco)-plastic constitutive 
model to describe the material behavior and thus neglect the elastic properties of material. The 
reason for this is that the elastic deformations are small compared to the very large plastic 
deformations that occur during the process. For the relation between the stress tensor and the 
strain-rate tensor, the Levy-Mises equations are used: 
 

2ij ij ijpσ δ με= − + ,       (3) 
 
where ( )1 3 iip σ=  is the pressure, ijδ  is Kronecker symbol ( 1ijδ =  if i = j and 0ijδ =  

otherwise), ijε  is the strain rate tensor with components: 
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and the viscosity μ is defined as 
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where ' '3 2 ( )ij ijσ σ σ=  is the effective stress and 2 3( )ij ijε ε ε=  is effective strain rate. 
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During the calculation procedures, it is possible to obtain the too small values of effective strain 
rate in equation (5). This may cause the numerical instability, and the limiting value of the 
effective strain-rate 0ε , under which the material is considered to be rigid, must be introduced into 

calculation. One suggestion for determination of 0ε  is given in [4,5,9,10]. 
To accomplish the numerical model, in addition to the governing and constitutive equations, the 
appropriate boundary conditions have to be specified at the boundaries of the solution domain. The 
boundary conditions can be of Dirichlet (velocity prescribed, e.g. ram speed), or Neumann (e.g. 
zero gradient of velocity in extrusion direction on the die exit) type. 
 
 
3. NUMERICAL METHOD 
 
3.1. Finite volume discretisation 

 
All numerical methods consist of transforming the governing equations into a system of (non-
linear) algebraic equation, with subsets of these approximating each conservation equation. In 
order to achieve this the time, the space and the equations have to be discretised. The discretisaton 
procedure of equations (1) and (2) by employing a finite volume method is in detail described by 
Demirdžić and Muzaferija [7] and Ferziger and Peric [8]. The spatial domain is discretised into a 
finite number of contiguous arbitrarily shaped control volumes (CV) of volume V bounded by cell 
faces Sj, with computational nodes placed in the centre of each CV.  
The boundary nodes, necessary for the specification of boundary conditions, are located in the 
centre of boundary cell faces, Figure 1.  
 

 
 

Figure 1 - Control volume of an arbitrary polyhedral shape 
 

After introducing the constitutive relation (3), into equation for momentum balance (1) and 
integration over whole CV, the discretised equation for one CV is obtained: 
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where n is the number of cells which share cell-faces with cell P0, (i=1,2,3) are the Cartesian 
velocity vector components and ii (i = 1,2,3) are the Cartesian base vectors.  
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The equation (6) has three distinct parts: convection and diffusion on the left hand side, and source 
term on the right hand side. The source term consists of terms coming from the stress tensor that 
are not contained in the diffusion term on the left hand side.  
This equation is exact, i.e. no approximation has been introduced so far. However, in order to 
evaluate integrals in the above equation, a way of calculating integrals and a distribution of 
dependent variable ui and physical properties of material in space have to be assumed. 
The integrals in the discretised equation (6) are approximated by using the mid-point formula. 
The gradients in equation (6) are calculated by assuming a linear spatial variation of dependent 
variables [5]. In this way equation (6) becomes a non-linear algebraic equation for each CV, which 
links the values of vi at cell P0 and its n nearest neighbors cells Pj: 
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The coefficient matrix obtained by this procedure is diagonally dominant and sparse with a 
number of non-zero elements in each raw equal to the number of nearest neighbours n.  
 
 
3.2. Solution procedure 

 
After discretisation, a set of 4N non-linear coupled algebraic equations of the form (7) with 4N 
unknowns (tree components of velocity vector and pressure)  is obtained for the solution domain 
consisting of N CVs. For the start of calculation, all dependent variables are given the 
corresponding initial values. Then the boundary conditions are applied. The equations are 
linearised and de-coupled by assuming that the coefficients and source terms are known and are 
obtained from the currently available values.  
First, linearised momentum equations are solved, by using a conjugate gradient linear equations 
solver [7]. Then, the pressure-correction equation is solved and the calculated values are used to 
correct mass fluxes, velocity components and pressure. Finally the coefficient and source terms are 
updated and the procedure is repeated until a converged solution is obtained.  
The pressure featuring in the source term of the discretised momentum equation is unknown and 
an independent use of the continuity equation (2) is not made yet. The pressure does not feature 
explicitly in continuity equation, therefore, some means for coupling the momentum and 
continuity equation and determining the pressure field are required. This is achieved by employing 
the predictor-corrector procedure defined by the SIMPLE algorithm [7,8], which results in a 
system of linear algebraic equations for pressure correction that has the same form as equation (7).  
 
 
3.3. Friction models 
 
To model the friction, a variety of constitutive laws can be used to define the surface tractions that 
are exerted on a material when it is sliding along a surface. Usually, the tangential surface tractions 

sτ  is related to the size of the normal surface traction snσ  and to the relative sliding velocity 
along the tooling ( )v vtool− . As a point of departure, a Norton-Hoff type law is considered which 
has the following form [11]: 
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( )1
s sn tool toolm βατ σ −= − − −v v v v      (8) 

 
where m represents the friction coefficient, and α and β are additional constitutive parameters. 
Notice that for this law the dimension of m depends on the choice of α and β.  
 
For metal forming processes the velocity of the tooling is given by: 
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v x
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     (9) 

 
where Γ  represents the corresponding surface area. 
 
For the particular values of the parameters α and β, the following special friction laws are 
obtained: 

• 0 1,  α β= =  -  the Norton friction law, 
• 0 0,  α β= =  - the constant friction law, 
• 1 0,  α β= =  - the Coulomb’s friction law. 

 
In metal forming analysis, all of these laws have been used to model friction. However, in some 
technologies, like extrusion practice, it has been observed that locally increasing the length of the 
bearings above a certain value, does not further improve the balance of the extruded. This suggests 
that towards the exit of the bearing the frictional traction decreases and even vanishes for large 
bearing lengths. This trend cannot be captured by adopting the constant friction law.  
 
Also, the Norton law is incapable of describing this behavior since it predicts that a particle that is 
sliding along the bearing will experience a frictional traction proportional to the sliding velocity. 
Since the velocity of a particle will not change significantly within the bearing, the Norton law 
suggests a nearly constant friction. Furthermore, there are indications that the sliding velocity has 
very little influence on the friction forces in metal-metal contact [11]. Therefore, the comparison 
between the Coulomb’s and constant friction law is done. 
 
 
3. 4. Numerical simulation of friction 
 
For the frictional models comparison, the finite volume method, originally developed for the fluid 
flow and heat and mass transfer problems [8], is used in this paper.  The tangential stress τb near to 
the cell faces with friction boundary conditions, Figure 2, is equal to product of viscosity and 
tangential velocity gradient in normal direction [3]: 
 

bt
b b

b

mp    -  for Coulomb's friction lawv
n fk       -  for constant friction law

τ μ
⎧∂⎛ ⎞

= = ⎨⎜ ⎟∂⎝ ⎠ ⎩
   (10) 

 
where m and f are the friction coefficient and friction factor respectively, pb is the pressure at the 
boundary node and k is the share yield stress.  
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Figure 2 - Velocity profile near the contact wall 
 

The tangential velocity on cell faces is extracted from equation (10): 
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where hb is the normal distance between the calculation point M and boundary face, figure 2, and 
vtM is obtained by linear interpolation from the values at points P0 and Pk , where Pk are the 
neighbour control volumes. This boundary constrain is of Dirichlet (velocity prescribed) type.  
The velocity profiles which correspond to the extreme values of contact friction (maximum 
friction factors and non-friction conditions) are given in Figure 3 and Figure 4. 
 

 
 

(a)                                                                 (b) 
 

Figure 3 - Velocity profiles near the contact wall for the case of maximum friction 
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       (a)                                                                  (b) 

 
Figure 4 - Velocity profiles near the contact wall for the case of non-friction 

 
The velocity profiles for extreme friction conditions given in Figure 3 and Figure 4 describe: 

(a) the tangential velocity component profile for maximum friction (sticking wall), 
(b) the normal velocity component profile for maximum friction, 
(c) the tangential velocity component profiles for non-friction (slipping wall) and 
(d) the normal velocity component profile for non-friction boundary condition. 

 
 
4. THE NUMERICAL EXAMPLE 
 
In this paper the constant friction and a Coulomb’s friction models are analyzed in an example of 
plane strain forward extrusion through a flat faces die with the degree of deformation ε = 50%. The 
prescribed workpiece yield stress is σY =100 MPa, and a rigid-perfectly plastic model of material is 
used. The ram velocity is v0=0,01 m/s. For the sake of simplicity, the friction boundary condition 
is prescribed only on the cylindrical part of the die.  
The numerical mesh consisting of 900 control volumes together with prescribed boundary 
conditions is given in Figure 5. Due to the symmetry, only the half of the solution domain is used 
for calculation. 

 
 

Figure 5 - The numerical mesh and boundary conditions 
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The obtained distributions of tangential stress component τxy for the constant friction law and 
different friction factors f are given in Figure 6.  
 

      
(a) 0f =  (b) 0 2f ,=  (c) 0 5f ,=  (d) 0 7f ,=  (e) 1f =  

Figure 6 - Distribution of the tangential stress τxy for the constant friction law 
 
One can see that the tangential stress on the die wall is systematically increased with the increasing 
of the friction factor. The case 0=f , Figure 6(a) corresponds to the sliding interface, while the 
case 1=f  represents the sticking wall (tangential stress on the die wall is equal to the shear yield 
stress 7,57== kxyτ  Mpa), Figure 6(e).  
The distribution of the velocity component in y-direction is given in Figure 7. 
 

       
(a) 0f =  (b) 0 2f ,=  (c) 0 5f ,=  (d) 0 7f ,=  (e) 1f =  
 

Figure 7 - The velocity distribution in flow direction 
 
One can see that this velocity component near the wall become smaller with increasing the friction 
factor, and in extreme case 1=f  this velocity component is equal zero in the whole contact area, 
Figure 7(e) and 7(a) respectively. 
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The relation between the extrusion pressure and the friction factor/coefficient is given in Figure 8. 
 

                           
 

(a)                  (b) 
 

Figure 8 - The relation between the extrusion pressure and friction factor/coefficient 
 
One can see a uniform increasing of extrusion pressure in the case of constant friction law, Figure 
8a. But, for the case of Coulomb’s friction law the maximum extrusion pressure (corresponding to 
the sticking wall) is reached before, approximately for the friction coefficient 3,0=m . The 
further analyze shows that the value assigned to the Coulomb friction coefficient (or constant 
friction law) has a substantial influence on both the flow and the temperature fields of extrusion 
material. 
 
 
5. CONCLUSION 
 
The presented numerical method enable that in every point on the metal surface that is in contact 
with the tooling, the stress state and the velocity must satisfy the criteria that the frictional traction 
is opposed to the sliding velocity. Also, the stick and slip are mutually exclusive. FVM enables 
obtaining the distribution of velocity components and pressure field throughout the solution 
domain, from which the other important variables e.g. strain-rate and stress tensor components can 
be easily calculated. The main advantages of the FVM are its simplicity and an efficient use of 
computer resources (steaming out of the iterative segregated solution procedure). The calculated 
results are in good correlation with theoretical considerations [9,14] and experiments given in [12].  
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REZIME 
 
U radu je ukratko opisan matematički model na kojem se temelji primjena metode konačnih 
volumena za simulaciju procesa zapreminskog oblikovanja metala. Metoda je korištena na 
primjerima dvodimenzionalnih ortogonalnih domena kod kojih su računske tačke locirane u 
centrima kontrolnih volumena. Primjeri primjene odnose se na procese istosmjernog istiskivanja 
koji su tretirani kao kvazistacionarni uz različite kontaktne uslove. U radu je detaljno opisan 
pristup definisanja trenja na graničnim površinama. Ovaj pristup se temelji na činjenci da u 
izrazu za  tangencijalni napon na graničnoj površini figurišu koeficijent trenja i gradijenti brzine. 
Tangencijalna komponenta brzina koja se dobije iz ovog izraza se zadaje kao granični uslov u 
kojem figuriše koeficijent trenja.  Uspoređivani su najčešće korišteni modeli trenja: Kulonov i 
zakon konstantnog trenja. Predloženi načini zadavanja trenja daju rezultate koji su u skladu s 
teorijski očekivanim vrijednostima (porast tangencijalnog napona na graničnoj površini od 0 za 
idealne kontaktne uslove do k za slučaj maksimalnog trenja kod kojeg je tangencijalna 
komponenta brzine jednaka nuli – lijepljenje materijala za stijenku matrice).  
Ključne reči: Metoda konačnih zapremina, Istiskivanje, Modeliranje trenja, Kulonovo trenje, 
Kontaktno trenje. 
 


