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ABSTRACT 
 

The paper concerns with a theoretical solution for axisymmetric extrusion of porous material 
through a conical die. It is assumed that the material is rigid plastic, obeying Green’s yield 
criterion and its associated flow rule. Coulomb’s friction law is adopted at the die surface. Hill’s 
method is used to derive simplified equilibrium equations. Therefore, the solution reduces to 
ordinary differential equations which are solved numerically. The variation of product porosity 
with process parameters as well as the distribution of the porosity in the plastic zone is illustrated. 
The solution is compared to another approximate solution based on a singular yield criterion.   
Key word: axisymmetric extrusion, porous material, Hill’s method 
 
 
1. INTRODUCTION 
 
The theory of plasticity for porous materials is often adopted to describe the processes of 
deformation in powder metallurgy [1]. The conventional constitutive equations of this theory are 
the yield criterion and its associated flow rule. In contrast to the classical metal plasticity [2] where 
Tresca and Mises yield criteria are usually used, a great variety of yield criteria for porous 
materials have been proposed and adopted [1, 3 - 7]. It is therefore of interest to understand an 
effect of the yield criterion on engineering solutions. In the present paper, an approximate solution 
for the process of extrusion of porous material through a conical die is found. It is assumed that 
thematerial obeys the yield criterion proposed in [3]. It is a smooth yield criterion and the 
corresponding yield surface in the space of principal stresses is an ellipsoid. Then, the solution is 
compared to the solution obtained in [8]. The latter solution is based on a singular yield criterion 
corresponding to a piece-wise linear surface in the space of principal stresses. In the case of the 
material with no pores the latter criterion reduces to Tresca yield criterion whereas the yield 
criterion [3] reduces to Mises yield criterion. 
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There are several conventional approximate methods used for analysis of metal forming processes. 
Unfortunately, many of them are not applicable to analysis of forming processes in powder 
metallurgy. In particular, the slab method deals with the balance of forces. In the case of steady 
processes the method is not applicable because the distribution of porosity, which influences the 
stress equations, is unknown in advance. Probably, the most popular method in the case of rigid 
perfectly/plastic solids is based on the upper bound theorem [2]. However, this method is also not 
applicable to steady processes in powder metallurgy. The reason for that is that the proof of the 
upper bound theorem is based on the assumption that the distribution of porosity is known. 
Obviously, it is unknown in steady processes. Another difficulty with the application of this 
method is that it is difficult to formulate a physically reasonable friction law compatible with all 
requirements of the theorem [1]. In the case of axisymmetric extrusion/drawing of rigid 
perfectly/plastic materials, an approximate method of solution can be based on an analytical 
solution for material flow through an infinite converging conical channel [9]. For porous materials, 
a generalization of the solution [9] is only available if friction between the billet and the die is 
neglected [10, 11]. Therefore, in the present paper, as well as in [8], the approximate method for 
deriving the equilibrium equation proposed in [12] is adopted. This method has also been 
successfully applied to other forming processes in powder metallurgy [13-15]. 
 
 
2. STATEMENT OF THE PROBLEM 
 
Geometry of the process is shown in Fig.1. It is natural to adopt a spherical coordinate system 
rϕθ  with its origin at point O. In this coordinate system, the die surface is determined by the 
equation 0ϕ ϕ= . It is assumed that the Coulomb friction law is valid on this surface 
 

f nfτ σ=  at          0ϕ ϕ=       (1) 
 
where fτ  is the friction stress, f is the friction coefficient, and nσ  is the normal stress acting on the 
friction surface. It is assumed that the velocity of the punch and the porosity at the entrance are 
given, U and 0ϑ , respectively. No force is applied at the exit end. The force applied to the punch, 
P, should be found from the solution. There are also natural boundary conditions at the axis of 
symmetry. The yield criterion proposed in [3] can be written in the form 
 

2 2

2 2 1
s sp

σ τ
τ

+ =         (2) 

 
Here σ  is the hydrostatic stress, τ  is the second invariant of the stress tensor, sp  is the yield 
stress at the hydrostatic compression, and sτ  is the shear yield stress. Both sp  and sτ  depend on 
the porosity, ϑ . In particular, sp →∞  and s kτ →  as 0ϑ → , where k  is the shear yield stress 
of the matrix material. In the case of axisymmetric deformation, in terms of the stress components 
in the spherical coordinates,  σ  and τ  are expressed as 
 

3
rr ϕϕ θθσ σ σ

σ
+ +

= ,     ( ) ( ) ( )22 2 21 2
2 rr rϕϕ θθ ϕτ σ σ σ σ σ σ σ⎡ ⎤= − + − + − +⎢ ⎥⎣ ⎦

 (3) 
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Figure 1 - Geometry of the process. 
 
 
The associated flow rule is given by [1] 
 

2 2 2 2

2 2 2

2 2, ,
3 3

2 ,
3

rr
rr

s s s s

r
r

s s s

p p

p

ϕϕ
ϕϕ

ϕθθ
θθ ϕ

ττσ σξ λ ξ λ
τ τ

ττσξ λ ξ λ
τ τ

⎛ ⎞ ⎛ ⎞
= + = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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= + =⎜ ⎟
⎝ ⎠

    (4) 

 
where rrξ , ϕϕξ , θθξ  and rϕξ  are the components of the strain rate tensor in the spherical 
coordinates (the other components vanish because of axial symmetry), rr rrτ σ σ= − , 

ϕϕ ϕϕτ σ σ= − , θθ θθτ σ σ= − , r rϕ ϕτ σ≡ , and λ  is a non-negative scalar multiplier. The continuity 
equation is written in the form 



 

Journal for Technology of Plasticity, Vol. 32 (2007), Number 1-2 
 

16

 

( )( )1 rr
d
dt ϕϕ θθ
ϑ ϑ ξ ξ ξ= − + +       (5) 

 
where d dt  is the material derivative with respect to time. 
 
 
3. KINEMATICS OF THE PROCESS 
 
In order to apply the method proposed in [12], it is necessary to select an appropriate velocity field. 
The simplest velocity field in the plastic zone (Fig.1) is  
 

( ) , 0, 0ru u r u uϕ θ= = =       (6) 
 
where ( )u r  is an arbitrary function of r. Obviously, the velocity field (6) satisfies the velocity 
boundary conditions at 0ϕ ϕ=  and 0ϕ =  where uϕ  must vanish. Using (6) it is possible to find 
the strain rate components 
 

, , , 0rr r
du u u
dr r rϕϕ θθ ϕξ ξ ξ ξ= = = =      (7) 

 
Since the flow is stationary, the continuity equation (5), with the use of (6) and (7), reduces to 
 

( )
( )1

2 0
1

du du u
dr dr r
ϑ

ϑ
−

+ + =
−

      (8) 

 
The general solution to this equation has the form 
 

( ) 2 , 0
1

Cu C
rϑ

= − >
−

       (9) 

 
The constant of integration, C, can be found from the condition that the material flux through the 
surface 1r R=  (Fig. 1) is the same on each of its sides. In particular, the value of u at 1r R=  is 
determined from 
 

( ) ( )1 01 cos 2u R U ϕ= − +        (10) 
 
Since 0cos 1ϕ ≈  for small 0ϕ  and the assumptions made can only be appropriate for such small 
values of 0ϕ  it is possible to get from (9) and (10) that 
 

( ) 2
0 11C R Uϑ= −         (11) 
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4. STRESS EQUATIONS 
 
It follows from (4) and (7) that  
 

0rϕτ =          (12) 
 
and ϕϕ θθτ τ= . Combining the latter equation and the identity 0rr ϕϕ θθτ τ τ+ + =  gives 
 

2rrϕϕ θθτ τ τ= = −        (13) 
 
Substituting (12) and (13) into the yield condition (2) and using (3) leads to 
 

22

2 2

3
1

s sp
ϕϕτσ

τ
+ =         (14) 

 
Equation (14) is satisfied by the substitution 
 

cosspσ γ= − ,     sin 3sϕϕτ τ γ= −      (15) 
 
It is reasonable to assume that 0σ <  and rr ϕϕτ τ> . Then, it follows from (13) and (15) that 
 

0 2γ π≤ ≤         (16) 
 
 The approximate equilibrium equation derived according to the method [12] depends on 
the velocity field chosen and stress boundary conditions. Since the velocity field chosen in [8] 
coincides with (6) and the friction law selected in [8] coincides with (1) where n ϕϕσ σ= , the 
equilibrium equation found in this work is appropriate for the problem under consideration. The 
equation has the following form [8] 
 

2 2 0rr rrr d dr m ϕϕσ σ σ+ − =        (17) 
 
where ( ) ( )01 1 2 cot 2m f ϕ= + . The stresses involved in (17) can be expressed in terms of γ  
with the use (15)  
 

cos 2 sin 3 , cos sin 3rr s s s sp pϕϕσ γ τ γ σ γ τ γ= − + = − −   (18) 
 
Substituting (18) into (17) gives 
 

( ) ( )

2 2sin cos sin cos
3 3

22 1 cos 2 sin 0
3

s s
s s

s s

d dp d dr r p
d d dr dr

m p m

τ ϑ γγ γ γ τ γ
ϑ ϑ

γ τ γ

⎛ ⎞ ⎛ ⎞
− + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

+ − + + =
  (19) 
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5. ASSOCIATED FLOW RULE 
 
It follows from (7) that ϕϕ θθξ ξ=  and 0rϕξ = . Therefore, it is sufficient to consider the first two 

equations of the associated flow rule (4). Excluding λ  in (4) and using (13) it is possible to arrive 
at the equation 
 

2 2

2 2

2 6
2 3

s srr

s s

p
p

ϕϕ

ϕϕ ϕϕ

τ σ τξ
ξ τ σ τ

−
=

+
       (20) 

 
Taking into account (7) and (15) equation (20) can be rewritten in the form 
 

cos 3 sin2
2 cos 3 sin

s s

s s

pdu u
dr r p

τ γ γ
τ γ γ

⎛ ⎞−
= ⎜ ⎟⎜ ⎟+⎝ ⎠

     

 
Using (9) this equation can be transformed to 
 

( )
( )

6 1 cos

2 cos 3 sin
s

s s

dr
dr p

ϑ τ γϑ
τ γ γ

−
=

+
     (21) 

 
Since sτ  and sp  are supposed to be given functions of ϑ , equations (19) and (21) form the 

closed form system with respect to ϑ  and γ . This system should be solved numerically.  
 
 
6. NUMERICAL SOLUTION 
 
The dependence of sτ  and sp  on the porosity can be assumed in the form [1] 
 

( )3 21s kτ ϑ= −      and     
( )22 1
3s

k
p

ϑ
ϑ

−
=     (22) 

 
Using these dependencies it is possible to find the derivatives of sτ  and sp  involved in equation 
(19) 
 

3 1
2

sd k
d
τ ϑ
ϑ
= − −      and     

( )( )
3 2

1 1 3
3

sdp k
d

ϑ ϑ
ϑ ϑ

− +
= −   (23) 

 
Equations (19) and (21) can be transformed to 
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( ) ( ) ( )
( )

2 2sin cos cos sin
3 3

22 1 cos 2 sin 2 cos 3 sin
3            

6 1 cos

s s
s s

s s s s

s

dp ddp
d d d

m p m p

τγγ τ γ γ γ
ϑ ϑ ϑ

γ τ γ τ γ γ

ϑ τ γ

⎛ ⎞ ⎛ ⎞+ = − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤− + + +⎢ ⎥⎣ ⎦−
−

 24) 

 
Using (22) and (23) the coefficients of this equation can be represented as functions of ϑ  and γ . 
Since 0rrσ =  at 2r R=  (Fig.1), the first of relations (18) gives 
 

( ) ( )2 23 cos 2 sin 0s f s fp ϑ γ τ ϑ γ− + =      (25) 
 
at 2r R= . Here fϑ  is the porosity of the final product and 2γ  is the value of γ  at 2r R= . 
Equation (25) provides the boundary condition to equation (24). Once equation (24) has been 
solved, the distribution of the porosity in the plastic zone can be found from (21) by integration in 
implicit form 
 

( )
( )2

2 cos 3 sin1exp
6 1 cos

f

s s

s

pr d
R

ϑ

ϑ

τ γ γ
ϑ

ϑ τ γ

⎡ ⎤+
⎢ ⎥=
⎢ ⎥−
⎣ ⎦
∫     (26) 

 
Note the in this equation γ  is the known function of ϑ  due to the solution to equation (24). Since 

0ϑ ϑ=  at 1r R= , it follows from (26) that 
 

( )
( )

0

1

2

2 cos 3 sin1exp
6 1 cos

f

s s

s

pR d
R

ϑ

ϑ

τ γ γ
ϑ

ϑ τ γ

⎡ ⎤+
⎢ ⎥=
⎢ ⎥−
⎣ ⎦
∫     (27) 

 
If fϑ  is prescribed, equation (27) determines 0ϑ . On the other hand, if 0ϑ  is prescribed, an 
iterative procedure should be used to satisfy equation (27) and thus find fϑ . In either case the 
extrusion ration, 1 2R R , is supposed to be given. 
The yield criterion (2) imposes a restriction on the maximum possible value of the shear stress 
supported by the material. For instant, the material supports no shear stress if spσ = . In the case 
of exact solutions, this restriction is naturally accounted for in the solutions. Since the present 
solution is approximate, it is necessary to take special measures to exclude the state of stress where 
the friction stress is larger than the maximum possible shear stress permissible by the yield 
criterion. In particular, it follows from (2) that the maximum possible shear stress is 
 

( )2
max 1s spτ τ σ= −        (28) 
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Then, combining (1) and (28), with the use of (15) and (18), yields 
 

1cos sin sin
3s s sf p γ τ γ τ γ⎛ ⎞

+ ≤⎜ ⎟
⎝ ⎠

      (29) 

 
Substituting (22) and the solution to (24) into (29) gives the minimum possible value of the initial 
porosity at any given value of the final porosity. The variation of such minimum value of 0ϑ with 
the final porosity is illustrated in Figs.2 and 3 at different values of the friction coefficient and 

0
0 5ϕ =  and  0

0 10ϕ = , respectively. To get the solution for smaller values of 0ϑ , it is necessary 
to modify the friction law (1). In the present paper, the range of parameters is chosen such that the 
inequality (29) is satisfied. 
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Figure 2 - Variation of the minimum initial porosity with the final porosity and  
friction coefficient at 0

0 5ϕ = . 
 

The numerical solution to equations (24) and (26) is illustrated in Figs 5 to 7 where the 
dependence of the initial porosity, 0ϑ , necessary to get the prescribed final porosity, fϑ , on the 

extrusion ratio, ( )1 2ln R R , is shown at different values of the friction coefficient, f, and the die 
angle, 0ϕ . To calculate these curves, equation (27) has been used. The right ends of the curves 
depicted in Figs 5 to 7 correspond to the case where the equality is satisfied in (29).  
It is of interest to compare the solution found and the solution found in [8] with the use of a 
singular yield criterion. In the space of principal stresses, this criterion is represented by a right 
pyramid at 0σ ≤  and is symmetric relative to the plane 0σ = . A complete description of this 
yield criterion and its associated flow rule is given in [1]. Because of special properties of these 
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equations, the kinematics of the process, including the distribution of the porosity, is determined in 
[8] independently of the stress equations. Therefore, this part of the solution [8] is independent of 
the friction coefficient and the die angle, which are only involved in the stress equations. The 
comparison of the two solutions is illustrated in Figs. 8 to 10 at different values of the friction 
coefficient and die angle. In each of the considered cases corresponding to the present solution, the 
curves obtained at 0

0 10ϕ = , 0.1f =  and 0
0 5ϕ = , 0.05f =  almost coincide (the difference is not 

visible on the diagrams). This shows that the friction coefficient and die angle have a similar effect 
on the porosity distribution. The curve corresponding to the solution [8] is shown by a dashed line 
on each graph (there is one curve on each graph because the solution is independent of 0ϕ  and f). 
It is seen from Figs. 8 to 10 that the difference between solutions based on the two yield criteria 
can be quite large. 
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Figure 3 - Variation of the minimum initial porosity with the final porosity and  

friction coefficient at 0
0 10ϕ = . 

 
 
7. CONCLUSIONS 
 
A new approximate solution for axisymmetric extrusion of porous material through a conical die 
has been found. The main goal of the research has been to show an effect of different yield criteria 
on the distribution of porosity in the plastic zone, including the value of porosity in the final 
product. To this end, the assumptions made in [8] have been also adopted in the present solution. 
The comparison of the two solutions illustrated in Figs 8 to 10 shows that the yield criterion can 
have a significant effect on the final result. 
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 The velocity distribution in the plastic zone can be found with the use of the solution to 
equations (24) and (26) combined with (9) and (11). The solution to equations (24) and (26) can 
also be combined with (18) to find the distribution of the stress components in the plastic zone 
including the surface 1r R=  (Fig.1). Then, the force required to push the material through the die 
can be found by integrating the radial stress at 1r R=  over this surface.   
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Figure 4 - Variation of the initial porosity 0ϑ  required to get the final porosity fϑ  with the 

extrusion ratio at 0
0 5ϕ =  and 0.05f = . 
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Figure 5 - Variation of the initial porosity 0ϑ  required to get the final porosity fϑ  with the 

extrusion ratio at 0
0 5ϕ =  and 0.1f = . 
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Figure 6 - Variation of the initial porosity 0ϑ  required to get the final porosity fϑ  with the 

extrusion ratio at 0
0 10ϕ =  and 0.05f = . 
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Figure 7 - Variation of the initial porosity 0ϑ  required to get the final porosity fϑ  with the 

extrusion ratio at 0
0 10ϕ =  and 0.1f = . 
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Figure 8 - Comparison of the present solution and solution obtained in [8] at 0.01fϑ = . 
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Figure 9 - Comparison of the present solution and solution obtained in [8] at 0.1fϑ = . 
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Figure 10 - Comparison of the present solution and solution obtained in [8] at 0.2fϑ = . 
 
 

ACKNOWLEDGMENT 
 
The first author acknowledges support through grants RFBR-07-01-96056 and NSH-4472.2006.1. 
 
 
REFERENCES 
 
[1] B. Druyanov: Technological Mechanics of Porous Bodies, Clarendon Press, New York 

(1993).  
[2] R. Hill: The Mathematical Theory of Plasticity, Clarendon Press, Oxford (1950). 
[3] R.J. Green: A plasticity theory for porous solids. Int. J. Mech. Sci., 14, 215-224 (1972). 
[4]  S. Shima, M. Oyane: Plasticity theory for porous metals. Int. J. Mech. Sci., 18, 285-291 

(1976). 
[5] A.L. Gurson: Continuum theory of ductile rupture by void nucleation and growth: Part 1 – 

Yield criteria and flow rules for porous ductile media. Trans. ASME. J. Engng Mater. Techn., 
99, 2-15 (1977). 

[6] A.R. Pirumov, R. Davies: Simple singular models of yield surface for porous materials. 
Powder Metallurg., 32, 300-303 (1989). 

[7] S. Alexandrov: Yield criteria for porous and powder materials. Mech. Solids, 29(6), 110-116 
(1994). 



 

Journal for Technology of Plasticity, Vol. 32 (2007), Number 1-2 
 

26

[8] S. Alexandrov, B. Druyanov: Investigation the process of the steady extrusion of a 
compacted material. J. Appl. Mech. Techn. Physics, 31(4), 645-649 (1990). 

[9] R.T. Shield: Plastic flow in a converging conical channel. J. Mech. Phys. Solids, 3(4), 246-
258 (1955). 

[10] M.E. Mear, D. Durban: Radial flow of sintered powder metals. Int. J. Mech. Sci., 31(1), 37-
49 (1989). 

[11] D. Durban, M.E. Mear: Asymptotic solution for extrusion of sintered powder metals. Trans. 
ASME J. Appl. Mech., 58, 582-584 (1991). 

[12] R. Hill: A general method of analysis for metalworking processes. J. Mech. Phys. Solids, 11, 
305-326 (1963).  

[13] S. Alexandrov, B. Druyanov: Pressing of a compact plastic material. J. Appl. Mech. Techn. 
Physics, 31(1), 108-113 (1990). 

[14] S. Alexandrov, L. Vishnayakov: Pressing thin-walled tubing from powdered material. J. 
Appl. Mech. Techn. Physics, 34(2), 162-168 (1993). 

[15] E. Doege, A. Bagaviev: On the analytical modeling of the compacting process of a porous 
metal ring. Int. J. Mech. Sci., 39, 1151-1159 (1997). 



 

Journal for Technology of Plasticity, Vol. 32 (2007), Number 1-2 
 

27

 
 
 
 
 
 
 
 
 

PRIBLIŽNO REŠENJE AKSIJALNO SIMETRIČNOG 
ISTISKIVANJA POROZNIH MATERIJALA 

 
 

Sergei Alxandrov1, Plga Chesnikova2, Alexander Pirumov2 
1) Institute for Problems in Mechanics Russian Academy of Sciences, Moscow, Russia 

2) Moscow State University of Instrumen-Building and Informatics, Mscow, Russia 
 
 

REZIME 
 
Rad se bavi iznalaženjem teoretnog rešenja aksijalno simetričnog istiskivanja poroznih materijala 
kroz konusno konvergenti kanal. Predpostavlja se da je materijal kruto plastičan i da se ponaša po 
Green-ovom kriterijumu plastičnosti. Usvojen je Coulombov zakon trenja na graničnim 
površinama. Za dobijanje pojednostavljenih jednačina ravnoteže korišćena je Hillova teorija. 
Zbog toga je rešenje ograničeno na obične diferencijalne jednačine koje su rešene numerički. 
Ilustrovana je promena poroznosti proizvoda u vezi sa ostalim parametrima procesa kao i 
raspored poroznosti u plastičnoj zoni. 
Dobijena rešenja su upoređene sa drugim približnim rešenjima baziranim na singularnom uslovu 
plastičnosti. 


