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ABSTRACT 
 

Adaptive strategies are nowadays considered a standard tool in practical finite element 
computations. For any problem, adaptivity is an essential tool to obtain numerical solutions with a 
controlled accuracy. This is tool, which offer solutions that follow disruption within continuum 
structure with possibility of handle process and stress – strain analysis. For some problems 
typically in the nonlinear domain adaptive strategies are even more fundamental, without them a 
finite element solution simply cannot be computed. This is the case, for instance, with problems in 
nonlinear solid mechanics applied on extrusion technology of aluminium in die area. 
Key words: finite element method, adaptive method, aluminium extrusion, stress-strain analysis 
 
1. INTRODUCTION 
 
The two main ingredients of an adaptive procedure are: 

- a tool for assessing the error of the solution computed with a given mesh and  
- an algorithm to define a new spatial discretization. 

Two different approaches may be used for assessing the error: error estimators or error indicators. 
Error estimators approximate a measure of the actual error in a given norm. In this paper, the term 
error estimator means that the estimated error can be arbitrarily close to the true error. Other 
definitions are also standard, in some works error estimators are required to behave as equivalent 
norms of the actual error [16,17,18,33]. Error indicators, on the other hand, are based on heuristic 
considerations. For each particular application, a readily available quantity is chosen, in an ad-hoc 
manner as an indicator of error. 
Error estimators may be classified into two groups: flux projection estimators and residual type 
estimators. Most estimators are well defined for linear problems but not for nonlinear problems. 
For instance, the popular Zienkiewicz and Zhu error estimator for linear problems is only an error 
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indicator for nonlinear problems, because it is based on super convergence properties that cannot 
be automatically extended to the nonlinear regime. Various choices of an error indicator can be 
found in the literature. From a geometrical point of view, for instance, the element aspect ratio or, 
more generally, the distortion can be used [5,14,15]. In nonlinear solid mechanics, some common 
choices are the equivalent plastic strain or its gradient. 
Error indicators are attractive because of their simplicity: they are based on very simple intuitive 
considerations (geometrical, mechanical etc.) and can be computed easily and efficiently. 
Quantities used as error indicators are always readily available in the finite element computation, 
so the overhead cost is minimum. The drawback is that they are heuristic the judgment of the user 
for defining a proper error indicator for a given problem is critical. Of course, error indicators are 
very specific of each particular application, and they must be calibrated (with the help of either 
analytical solutions in simple tests or error estimators). Moreover error indicators only give 
relative information. Since the error is not quantified, an error indicator only tells where the spatial 
discretization must be richer, but not how much richer should it be. 
Error estimators, on the other hand, must be based on firm mathematical foundations and are 
usually more expensive to evaluate than error indicators. In exchange for that, they have a major 
advantage: they provide an objective and quantitative information about the error. Moreover, the 
range of applicability of a certain error estimator is larger than for a given error indicator [19,32]. 
The second ingredient of an adaptive procedure is the definition of a new spatial discretization. 
The goal is to increase or decrease the richness of the interpolation according to the output of the 
error assessment. Three main types of strategies may be used: h - adaptivity, p - adaptivity and r-
adaptivity. 
h - adaptivity consists of building a new mesh, using the same type of elements, and adapting the 
element size to the requirements of the solution. That is, reducing their size where the interpolation 
must be enriched (i.e. more accuracy is needed) and enlarging the elements where it is already 
accurate enough. 
In p - adaptivity, the degree of the interpolating polynomials is increased. The idea of p - 
adaptivity is to increase the order of the polynomials where a richer interpolation is needed_ and 
maintain polynomials of low order where it is already rich enough. 
r - adaptivity consists on relocating the nodes to adapt the mesh to the requirements of the solution. 
The number of nodes and the mesh connectivity remain constant. Nodes are concentrated in zones 
where they are most needed. The mesh is allowed to coarse in other parts of the domain, where a 
poorer interpolation suffices. 
 
2. STRUCTURAL NONLINEAR MODEL, ALE METHOD 
 
Ordinary finite deformation problems in solid mechanics have been solved using a Lagrangian 
method for the finite element mesh. In this method, the finite element mesh is append in, and 
moves with the material constituting the continuum. The pure Lagrangian approach has the 
advantage of having to satisfy less complex governing equations, compared to the pure Eulerian 
method. This may be explain to the absence of the convection terms, and also simple updating 
technique for path and history dependent materials in the former approach. However, a significant 
limitation of this description is encountered when the solid deformation become large. Drawback 
of control over the mesh movement results in distorted meshes with large changes in element 
dimensions, which adversely affects the accuracy of the solution. Moreover, problem involving 
certain contact boundaries, especially those with sharp edges or corners, may not be represented 
precisely in this description. This is due to the fact that the boundary condition has to be specified 
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on a material point which might move itself. 
Despite the introduction of sophisticated remeshing schemes to circumvent the problems 
associated with excessive mesh distortion in the Lagrangian description, an accurate contact 
boundary conditions is often questionable. Also, in most cases, remeshing after every time step 
becomes very expensive. 
The Eulerian method in which the mesh remains stationary, on the other hand, introduces other 
difficulties like appropriate representation of the free boundary. In spite of its capability to 
represent internal deformation effectively, the Eulerian mesh is less suited for domains whose 
boundaries or interfaces move. The shortcomings of each of the above method encountered in 
large deformation analysis, demand a method that can combine the advantages of both the above 
method into a single method. Such method in which the finite element mesh need not adhere to the 
material but may be in general motion relative to the material is known as the arbitrary Lagrangian 
Eulerian method (ALE). The ALE method reserves the potential to represent a Lagrangian or 
Eulerian method as limiting cases at points, where such method are desired. Thus, it is evident that 
an ALE method is ideally suited for solving of complex problems in solid mechanics, particularly 
those dealing with large deformation metal forming, especially for extrusion aluminium 
technology for hollow parts [24,25,26]. 
There are explicit and implicit methods in order to solve this problems. Explicit methods, though 
noted for their efficient performance with a class of structural problems, especially those with high 
frequency response such as in the case of impact and shock, suffer from the lack of generality of 
application. In general, the time steps in explicit methods are restricted by stringent stability 
conditions, which require the evolution of the maximum eigenvalue of the system. Frequently, this 
is rather inconvenient in nonlinear problems, as the eingevalues change with the evolution of 
solution. Belytschko has obtained bounds on the eigenvalues based on an evaluation of  Raleigh 
quotient and has stated that very often these upper bounds are drastically overestimated leading to 
much smaller time steps than are required for stability. Consequently, implicit methods, which 
have more flexibility with respect to numerical stability, are often more suited in the finite element 
analysis of inertial problems [22,23,28,29].  
A major drawbeck of the implicite method is the evaluation of the tangent iteration matrix during 
each iteration step performed for achieving dynamic equilibrium. However, the superlinearly 
convergent quasi-Newton methods have proven to be extremely beneficial in alleviating these 
obstacles associated with implicit algorithms. These methods replace the Jacobian matrix in 
Newton’s method with an approximation matrix that is updated by mere matrix multiplication at 
each iteration step resulting in a drastic reduction in the computing effort.   
From the previous discussion on time integration, it is apparent, that in any numerical scheme 
employed for the analysis of elasto-viscoplastic problems, integration of the rate constitutive 
equations to obtain the internal variables and stresses is of utmost importance. In particular, 
objective rate forms of stresses and internal variables have to be integrated to yield their updated 
values at the end of a time step in an increment formulation. 

2.1. Governing equations in the ALE method 

The ALE method introduces a references configuration which consist of a set of grid points in 
arbitrary motion in space. Each point of this reference configuration may be unambiguously 
identified by an invariant set of three independent coordinates χi . The motion of the reference 
frame may then be expressed as an arbitrary continuous function of χi and the time t : 

 ( )t,xx jii χ=  (1) 
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The formulation requires an inverse to (1) to exist, 

 ( )t,x jii χ=χ  (2) 

such that the Jacobian 
j

ixJ
χ∂
∂

=  is non vanishing. The above description of the referential system 

does not refer directly to the motion of particles constituting the continuum and it is therefore 
necessary to establish a correlation between this system and the Lagrangian system which 
inherently defines the motion of the particles. Such a relation demands a unique connection 
between the two systems at every stage of deformation of the continuum, i.e., a single material 
point may coincide with only one point (not necessarily the same point always) of the grid system. 
In the Lagrangina system the material particles are identified by a set of coordinates X known as 
the material coordinates. In the deformed configuration the material particle may occupy a position 
x = (x1, x2, x3), which may be expressed in terms of the material coordinates and time t as : 

 ( )t,Xxx jii =  (3) 

where the inverse of (3) is assumed to exist such that the determinant of the Jacobian 
j

i

X
xĴ

∂
∂

= is 

not equal to zero. To obtain a relation between the referential and material coordinates, we assume 
a point x in space occupied at a time t by elements of booth the systems (material point and grid 
point). Thus, by virtue of the existence of the inverse mapping of (1) and (3), an interrelation 
between the motion of material and referential (grid) points may be established as: 

 ( ) ( )t,Xf̂t,xf kijii ==χ  (4) 

Equation (4) may be interpreted as a mapping of the material domain onto the referential domain. 
With the notion that such a relation exists, it is then possible to derive the conservation equations 
of mechanics with respect to a referential configuration. The Rejnolds transport theorem is applied 
to an arbitrary control volume moving through a deforming continuum which is then shrunk to a 
point. This yields the resulting field equations in the arbitrary Lagrangian – Eulerian method as 
[5,6,9,25]: 

Continuity : 

 ( ) ( )( ) 0WV
x

J
t
J

ii
i

=−ρ
∂
∂

+
∂
ρ∂

χ

 (5) 
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where : ρ - material density, σij – Cauchy stress tensor, G – body force vector per units mass, û  - 
specific internal energy, q – heat flow vector, D – rate of deformation tensor, f – rate of heat 

addition by a source, ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

=
χt

xW - velocity of a representative grid point, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
xt

xV - represents the 

velocity of material point coinciding with the grid point at time t. 

The above set of equations may be interpreted as material conservation laws with respect to 
arbitrarily moving grid points. Advantage of the ALE method is that, in general, the velocity W of 
the reference frame (representative grid point) may not be the same as the coincident material 
point velocity V as in the Lagrangian description, or be zero as in the Eulerian method. In the 
event, that a grid point may coincide with material point, the relative velocity term (W - V) 
become zero, resulting in the vanishing of the convection terms and consequently the set of 
equations becomes Lagrangian. Similarly, a pure Eulerian description is obtained by simple setting  
W = 0. 

It is this flexibility to use a different method pointwise, where the grid points may be made to 
move with material or remain stationary in space or even to move with any arbitrary velocity, that 
makes the ALE method so attractive. This feature provides a greater scope for the user to manage 
the nodal or grid points effectively in a large deformation analysis. [3,4,24,25]. 

When analyzing problems in solid mechanics, especially nonlinear materials with time and history 
dependent variables using the ALE method, it can be observed from (5) – (7) that a relationship 
between time derivatives, with material and referential coordinates fixed, is necessary. This 
relation may be obtained by direct comparison of the ALE conservations laws with the 
corresponding Lagrangian form (W = V). If β is a time-dependent variable for the material points, 
then the following relation may be established : 

 ( )
k

kk x
VW

tt ∂
β∂

−+
∂
β∂

=
∂
β∂

χχ

 (8) 

This equation provides the link necessary for updating various material variables like velocity, 
density, temperature, Cauchy’s stress, etc., to the grid points at the end of each time step in ALE 
method. The above set equations, together with the constitutive relations discussed in the next 
section form a basis for the weak forms used in the finite element formulation for large 
deformation analysis using the arbitrary Lagrangian – Eulerian description. 

2.2. Constitutive equations 

The constitutive relations for elastic – viscoplastic materials adopted in this paper a rate type, 
based on the additive decomposition of the rate of deformation into elastic and inelastic parts. This 
requires the choice of an appropriate objective stress rate, which depends on the class of materials 
being considered. In this analysis, a general formulation has been carried out for elastically 
transversely isotropic material. Constitutive relation together with a yield criterion is best 
represented in a rotated Lagrangian system. In this method, the stress rate is derived from the 
material time derivative of a stress tensor (also noted as the rotated Cauchy stress tensor) 
transformed into a rotated space of the material deformation to yield: 

 RRTσ=t  (9) 
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where : t - is the  rotated stress tensor, σ - is the Cauchy stress tensor, R – is the proper orthogonal 
tensor obtained from polar decomposition of the deformation gradient tensor R ( 1FUR −= ). The 
rotated stress tensor t , which has the same principal invariants as the Cauchy stress tensor, is the 
true stress which would result if the deformation gradient was the stretch U alone. An interesting 
consequence of this transformation is that the conjugate strain rate for this stress is the rotated rate 
of deformation tensor d, ( DRRd T= , where D is the rate of deformation tensor) which, when 
integrated in time, yields a physically meaningful strain measure [1,2,20,21,24,25]. The frame 
invariant constitutive model is therefore formulated in a rotated stress-strain space. 

In this model, it is assumed that the rotated rate of deformation tensor d admits an additive 
decomposition into elastic and inelastic parts. A thermodinamic argument for such decomposition 
is provided within the framework of internal variable theory, where such a decomposition may be 
obtained independent by any kinematic considerations. Thus: 

 vpe ddd +=  (10) 

where ed  - represent the elastic part and vpd - represent the viscoplastic part of the deformation 
rate tensor. The material time derivative of rotated Cauchy stress may then be related to the rate of 
rotated deformation tensor through the elasticity relation as : 

 ( )vpdd:E −=t   (11) 

where E is a fourth order elasticity tensor which may be a function of the spatial stress tensor in 
general. The above equations not valid for materials which exhibit hyperelastic response but is 
typical of hypoelastic materials which do not admit a stored energy [44,45]. 

In the characterization of the viscoplastic part of the rate of deformation, an internal state variable 
approach is adopted, where the response functions depend on the past history of the independent 
variables only through the present values of certain variables describing the internal state of the 
continuum. Within this approach, there exists two categories of models: theories that assume yield 
criteria which separate purely elastic deformations from combined elastic-viscoplastic 
deformations and theories that assume no yield criterion and allow the possible existence of elastic 
and viscoplastic deformations at all stages of loading. It should be noted that the power law model 
has been widely used by material scientists to simulate metals [10].  

However, a recent critical study indicates that the yield based theories in general offer a greater 
promise in modeling a wide variety of inelastic behavior like loading / unloading, rate and history 
effects, isotropic and kinematic hardening with Bauchinger effects, creep / relaxation, etc. A three 
dimensional unified, overstress model of this category [5,6,9,12] has been appropriately extended 
to include the effects of large deformation and initial anisotropy. In this description, the rate of 
rotated viscoplastic deformation tensor is given as : 

 ( )( ) ijp
vp
ij tt,Wtd ∂∂θκ−Φγ=  (12) 

where γ is a temperature dependent viscosity coefficient,  is the MacCaulay operator, κ is an 
internal state variable, in particular a parameter describing isotropic work hardening, Wp is the 
inelastic work and θ is the absolute temperature. The term t  may be defined as an effective 
rotated Cauchy stress which may be written as : 
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for transversely isotropic materials. The scalars F, G and M are parameters of anisotropy which 
depend on the amount of inelastic strain accumulation and the temperature [12,42,43,44].  

The rate of deformation tensor defined by (12) is for associated plastic flow and therefore satisfies 
the normality and incompressibility conditions. The viscoplastic model, though incorporates 
isotropic hardening, does not include kinematic hardening. 

The set of constitutive relations (12) will be complete by supplementing them with the evolution 
laws for the internal variables. The rate-dependent characterization of plasticity will reside in the 
characterization of these evolution laws. The growth law used in this model assumes a linear 
relation between the rate of change of the work hardening parameter κ and equivalent rate of 
viscoplastic deformation tensor : 

 vp
pdE

t
=

∂
κ∂  (14) 

where Ep is an equivalent plastic modulus. Despite the fact that other nonlinear forms may be more 
realistic from a representation point of view, the evaluation of the anisotropic parameters are 
simplified with the linearity assumption. Thus, the set of equations 11-14 form the basis of the 
material model used in this analysis. 

2.3. Weak forms and finite element approximation in the ALE method 

Weak forms of the mass and momentum equations may be obtained by taking the product of (5) 
and (6), respectively, with appropriate weighting functions and integrating over the current grid 
volume. However, in the finite element analysis of time-dependent finite deformation problems, 
emphasis is placed on the proper time integration scheme and hence the selection of the 
appropriate configuration. It is apparent from the discussion given in the introduction that an 
implicit time integration scheme is better suited for the class of internal problems considered here. 
In this analysis, we have chosen to neglect the transient term 

χ
∂∂ρ tVi in the momentum balance 

equation (6), i.e. we have assumed a quasi-static process with respect to a grid point [42,43]. 

An overall stability analysis for implicit schemes used in the nonlinear initial value problem with 
an ALE description is extremely difficult because of the nonlinear, nonsymmetric convection 
operators together with the nonlinearities arising out of the material constitutive relations. The 
selection of the implicit method has therefore been based on critical examination of the 
conclusions drawn from the stability analysis of a few associated systems [44,45]. 

In problems of fluid mechanics, the convection term in an Eulerian method gives rise to an 
oscillatory solution when the Galerkin formulation is used. In the recent years various upwinding 
technique like "upstream weighting", "Petrov - Galerkin finite element method" have been used to 
stabilize the solution. It is observed that the oscillatory behaviour is apparent when the local Peclet 
number which is proportional to the velocity becomes large ≈ 2. In solid mechanics problems, such 
stabilizing may therefore be necessary when treating highly transient problems like impact, shock, 
etc. However, in the class of internal problems that are of primary interest here, the difference 
between the grid and the material velocity is not believed to be large enough to initiate significant 
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oscillations in the solution. Nevertheless, it is also reassuring to notice that an energy analysis  of 
the algorithms mentioned above for certain convective systems with nonlinear terms guarantees 
unconditional stability for the generalized mid-point family [24,25,42]. 

Using the generalized midpoint rule, the principle of virtual work is written in an intermediate grid 
configuration ( )α+Ω nt  as: 

 
( )

( )
( ) ( )( )∫ ∫∫∫

α+ α+α+α+ Ω ΓΩΩ
Γ+Ωρ=Ω

∂
∂

−ρ+Ω
∂
∂

σ
n nnn t t iiiit i

j

i
jit

j

i
ji duTduGdu

x
VWVd

x
u   

  (15) 

where all variables are at the mid-step configuration, corresponding to time tn+α with the position 
of grid being interpolated as : 

 ( ) 1nnn xx1x +α+ α+α−=   for   0≤α≤1 (16) 

As mentioned, an unambigous connection is required between the lagrangian and the referential 
system. This implies that the boundary of the grid domain never leaves the boundary of the solid 
or quantitatively: 

 ( ) 0nWV =⋅−  (17) 

where n is the outward normal to the grid boundary. This enables the accomodationof all kinds of 
boundary conditions. The boundary of the grid is assumed to be the union of displacement, 
traction and contact types, i.e. Γ(t) = ΓiU(t) ∪ ΓiT(t) ∪ ΓiC for 1 ≤ i ≤ 3, with the usual respective 
conditions imposed. In special cases, such as boundaries with concetrated loads it might be 
necessary to make the corresponding load application points Lagrangian. 

 

Fig 1. Motion of grid point and material point in a time step in the ALE description 

Obviously, the above weak form (15) demands the evaluation of the different variables in the 
intermediate equilibrium configuration occurring between two consecutive equilibrium states. Let  
βn and βn+1 correspond to values of any such variables of the problem at time tn and tn+1 , 
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respectively. The midstep value of this variable may then be obtained by a linear interpolation 
between its two end values as : 

 ( ) 1nnn 1 +α+ αβ+βα−=β  (18) 

It is assumed that the value of the variable is known at a grid point in the n-th configuration. Its 
value in the (n + 1) – th grid configuration may be calculated through the evaluation of the grid 
point increment of the variable Δgβ, by using the generalized midpoint integration as : 

 
α+

χ

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
β∂

Δ=β−β=βΔ
n

n1ng

t
t  (19) 

However, for path-dependent material variables like Cauchy stress, velocity, work hardening 
parameter, etc., the evaluation procedure of the increment Δgβ is not direct. For this type of 
variables, the grid point increment must be derived from the material point increment Δmβ. The 
relation between the time derivatives of a variable at a fixed material point and a grid point (8) 
may be numerically integrated to yield this desired relation as: 

 ( ) α+

α+
α+α+

∂
β∂

−Δ+βΔ=βΔ n
k

n
n
k

n
k

mg

x
VWt  (20) 

Figure 1 clearly shows the distinction between the two increments. The contact boundary is 
incorporated using the well-known exterior penalty formulation for unilateral contact problems. It 
should be emphasized that, though in the present work only normal contact with a rigid surface is 
trivial. An extensive treatment of contact of two deformable surfaces is trivial. 

The central idea of this formulation lies in the introduction of interface spring to preclude 
penetration. The possible contact boundary ΓC in this formulation is assumed to consist of purely 
Lagrangian nodes. Constructing a local coordinate system θξ (1≤ξ≤3) on each part of the candidate 
contact boundary, a procedure similar to that discussed [23,24,42,43] may be adopted to reach the 
following non-penetration condition at the intermediate configuration: 

 ( ) 3
n
32

n
21

n
1

n uu,u Δα+θ≥Δα+θΔα+θψ α+  (21) 

In (21) ψn+α(θ1 , θ2) is the parametric representation of the rigid surface at time tn+α and θξn 
represents the coordinates of a point on the contact boundary at time tn . It is assumed that the 
positive θ3 coordinate is roughly in the direction of the inward normal to the rigid surface. 
Linearazition of the function ψ in αΔu1 and αΔu2 results in the following contact condition: 

 0gnu n ≤−⋅Δα α+  (22) 

where nn+α is the inward normal to the rigid surface at the intermediate step and g is the gap 
function. The constraint condition may than be incorporated in the principle of virtual work (15) 
through the use of an exterior penalty method to yield the approximate approximation for traction 
as: 

 α+α+α+ −Δα+=Δα+= n
nn

nn
n

nn ngukTnTTT   on  CΓ  (23) 
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where  is the MacCaulay operator. The above equation (23) is a result of the assumption that 
the contribution to traction within a time step, is due to normal contact alone. The penalty 
parameter kn (→∞) is representative of the rigidity of stiff normal springs on the contact boundary. 
It is evident from (23) that only in the case of contact an increment of pressure is activated [34]. 

The midstep value of the density is evaluated directly by solving the weak form of the continuity 
equation. This equation, after the application of the constraint condition (17) may be written as 

 
( )

( )
( ) ( )

Ωρ
∂
∂

ρ−Ω
∂
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   (24) 

Equation (24) is solved for ( ) α+

χ
∂ρ∂ nt  from which density at the intermediate step may be 

obtained as: 
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Δα+ρ=ρ
n

nn

t
t  (25) 

The solution to the temperature problem may similarly be obtained easily by considering the weak 
form of the energy balance equation (7), but it has not been considered in the present work. The set 
of equations discussed above, must now be solved after finite element discretization using iterative 
technique. 

 
3. NONLINEAR MODEL OF METAL FLOW FOR ALUMINIUM 
FORWARD EXTRUSION OF HOLLOW ELEMENTS 

 
Modelling of metal flow process and fulfill of tool for aluminium and their alloys in the area of 
tool die represent distinct nonlinear proposition. There are meaning changes of cross section from 
workpiece to finished part which follow high deformation grade. The process of forward extrusion 
for elements with complete cross section does not matter this investigation. Again, process of 
forward extrusion for hollow and 
half hollow elements of aluminium, 
that is more com- plex, is object of 
this investigation. The tool model 
for this kind of fini- shed part su-
ppose presence ce- ntral thorn i.e. 
mandrel, which pro- vide to obtain 
hollow element with define geometry and shape on outlet part of tool [30,31].  

In many case, there are cylindrical workpiece with complete cross section which transform in 
complex cylindrical and prismatic profile with more and small deviation from basic shape. In the 
outlet zone of tool, it can be suppose plane deformation state. Such model to impose as solution 
because the outlet profile has very small thickness, about 1mm, and notable main width.  

In this analysis used nonlinear finite element with name Element 11 [MSC.Marc], arbitrary 
quadrilateral isoperimetric element, with four node, which recommend for plane deformation state.  
The nodes numbering must be counterclockwise.  
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Their full geometry is defined with twelve nodes. If some of nodes on side of element is non 
define, the side retain first shape or rectilinear shape, without of node. Quadrilateral element it was 
generate by copy single quadrant with polynomial of third rang. 
For this reason, it was use for curved boundary surface. As this element uses bilinear 

interpolation functions, the strains 
tend to be constant throughout the 
element. This results in a poor 
representation of shear behavior. The 
shear (or bending) characteristics can be 
improved by using alternative interpo-
lation functions. That is particularly 
useful for analysis of approximately 
incompressible materials and for analysis 
of structures in the fully plastic range. 
The stiffness of this element is formed 
using four - point Gaussian integration. 
This element can be used for all 
constitutive relations [39]. 
Capability for adaptive behavior of mesh, 

at this solution, allude augmentation number of elements, same type, by divided original element 
his inside on define level (fig.3).  

 
 Original element, (1) Level 1, (4) Level 2, (16) Level 3, (64) 

Fig 3. Adaptive behaviour of element  

Anyone adaptive process executed according to full defined and chouse criterion to fulfill in each 
step. It is possible to choose one, two, three, or four remeshing criteria: Element Distorsion, 
Contact Penetration, Increment, or Angle Deviation.  

 
 no deformed mesh deformed mesh before and after rezoning operation  

Fig.4. Rezoning of deformed mesh 

There are three sources of nonlinearity: material, geometric, and nonlinear boundary conditions. 
Material nonlinearity results from the nonlinear relationship between stresses and strains as 
inherent effect of strain hardening during metal forming process. Geometric nonlinearity results 
from the nonlinear relationship between strains and displacements on the one hand and the 

 

Fig.2. Selection of finite element type 
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nonlinear relation between stresses and forces on the other hand. Boundary conditions and/or loads 
can also cause nonlinearity i.e. contact and friction problems. 

   

 

 

 

 

 

 

 

Fig.5. Plasticity parameters of aluminium 

Two dimensional model of workpiece with parametrics plasticity during fulfill of tool area and 
plasticity metal flow in calibration zone which follow, model of rigid matrix with function of 
boundary of space for metal forming process and model of mandrel which ensure obtain of hollow 
aluminium elements it can recognize at analysis. The workpiece model has aluminium 

characteristics well know and strain 
hardening curve that proposed in flowchart. 

The workpiece relative motion it was task 
along y-axis with negative sign and enough 
finite elements (336) for stuff whole tool 
zone and flow in calibration zone 
[38,39,40,41]. The quadrilateral element  
size is change on two level, 0.04 and 0.05 
whereby fulfill two opponent demands, 
refinement of simulation process and their 
time space. Remeshing criteria of mesh was 
defined with frequency 5. 
Two loading stepping was define in order to 
get rather solution indicate numerous 
sample of simulation and analysis, first and 

very small when metal forming process started and second which take whole process simulation of 
aluminium plasticity flow. For this reason, first and second loading stepping was establish for 
aluminium forming process. The most important parameter for attain number of iteration is 
number of step or time of loading in simulation of metal forming process. In order to get more 
accurate solution it was make many simulation experiment. 

The plane deformation state condition and criterion was defined after loading stteping, their  
number and time consuming. The Lagrangian update method was selection with maximal number 
of nodes in contact to 2000. The output results it can be selection according analysis demands.  
 

 
Fig.6. Remeshing parameters
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Fig.7. Loading parameters 

4. NONLINEAR ADAPTIVE SOLUTIONS FOR FORWARD EXTRUSION 
OF HOLLOW ELEMNTS 

On the next figures shows some results of investigation stress – strain field in the area of tool 
cavity by nonlinear finite element method [38,39,40,41]. Process simulation of filling tool with 
aluminium alloy (AlMgSi0.5) at the variable temperature extrusion, with temperature of workpiece 
on 480°C and temperature of tool die on 450°C, at the constant velocity extrusion 7m/min, shows 
only characteristic steps and attain level of stress and strain. The mesh behaviour in calibration 
zone and method adaptivity, remeshing and refinement evident demonstrate indispensable this 
approach in following of metal forming process. 

         

Fig. 8. FEM adaptive model for stress-strain field in tool cavity near mandrel, 987 step 
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Fig.9. FEM adaptive model for stress-strain field in tool cavity near mandrel, 1146 step 

 

     

Fig.10. FEM adaptive model for stress-strain field in tool cavity near mandrel, 1776 step 
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Fig.11. FEM adaptive model for stress-strain field in tool cavity and outlet zone, 2360 step 

 
 

 

          

Fig.12. FEM adaptive model for stress-strain field in tool cavity and outlet zone, 2526 step 
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Fig.13. FEM adaptive model for stress-strain field in tool cavity and outlet zone, 2561 step 

 

 

       

Fig.14. FEM adaptive model for stress-strain field in tool cavity and outlet zone, 2607 step 
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Fig.15. FEM adaptive model for stress-strain field at outlet zone, 2639 step  

 
5. CONCLUSION 
 
The basic postulates of adaptive method indicate the great potential of software tools in a modern 
technology process. Observing the changes of stress – strain field in tool cavity in this manner, 
becomes more accessible to analysis of parameters in metal forming processes. There is a potential 
of metal flow modeling and optimization in die area on a virtual  model with stress plasticity 
control, displacement in x, y directions, friction force etc. Implementation of adaptive model in 
real conditions of plastic deformation during aluminium forward extrusion of hollow element at 
high temperatures is presented. 
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REZIME 
 

Standardne metode konačnih elemenata danas se zasnivaju na primeni adaptivnih metoda. Za bilo 
koji problem adaptivnost je osnovni alat za dobijanje numeričkog rešenja sa kontrolisanom 
tačnošću. Ovaj metod nudi rešenje za praćenje poremećaja u strukturi materijala sa mogućnošću 
vođenja i kontrole procesa kao i naponsko deformacione analize. Za neke probleme u nelinearnoj 
oblasti adaptivnost je i više nego fundamentalna metoda bez koje sama metoda konačnih 
elemenata gubi smisao. To je slučaj i u mehanici čvrstih tela sa posebnom primenom na  
tehnologiju istiskivanja aluminijuma u samom žarištu deformacije. 
 
Ključne reči: metoda konačnih elemenata, adaptivne metode, istiskivanje aluminijuma, naponsko 
deformaciona analiza. 
 
 
 


