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ABSTRACT 
 
The plane state of stress for some deformable body is analysed in this paper. Besides, linear 
operator is used as mathematical mean. Liner operator is actually a mixed second-order tensor. 
However, the application of liner operator allows the analysis of stress with the methods of vector 
algebra.  
It is demonstrated that, because of the symmetry of linear operator in the plane state of stress,the 
two principal directions of stress exist which linear operator leaves alone. Further, the intensities 
and the locations of the principal normal stresses are expressed relative to cartesian coordinate 
system very simple.  
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1. INTRODUCTION 
 
Some properties of the stress vector are analysed for a deformable body, which there is in the 
conditions of plane stress. In the case of the space stress can be proved that at anyone point of a 
deformable medium at least one the principal direction exists always. For the plane stress, in 
general case, such direction needn't exist. The symmetry of stress tensor renders certain, and in a 
plane, the existence the principal directions of normal stress. 
Some properties of stress vector are analysed through the medium of linear operator. Linear 
operator is in fact the mixed second-order tensor, and study of his is the same what and studies the 
mixed second-order tensor. Namely, in the stress theory the state of stress at anyone points of a 
deformable medium completely is determined by the linear vector function. 
Firstly, it is demonstrated that of second-order polynomial noughts are real. After this, the proof is 
given for the existence and the location of principal normal stresses, which are mutually 
perpendicular. Finite, it is allowed the calculation of the algebraic value of the principal normal 
stresses. 
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2. STRESS VECTOR IN THE PLANE  
 
For the state of stress of the deformable body is said that is plane ( two-dimensional), if at every 
point, for the everything planes which can be placed throughout every of points of this body, the 
stress vector lies in one end same the plane. In other words, the state of stress of the body is plane 
if and alone if the coordinate stress vectors 1 2 3p ,p , p

r r r
 are complainer, for every point and every 

plane, i.e., 
                                                     ( )1 2 3p p p 0× ⋅ =

r r r
.                                                                       (1) 

 
Let the coordinate vector 3p

r
is dependent of the coordinate vectors 1 2p ,p

r r
. 

For the base (  in the vector space X)1 2e , e
r r

0 (M) end anyone two vectors 1 2p ,p
r r

, from the vector 
space X0 (M), one and same one linear operator A : X0 ( M ) → X0 ( M ) exists such that is   
 
                                                  .                                                                      (2) 1 1 2Ae p ,Ae p= =

r r r r
2

 
Every vector i ip Ae=

r r
∈X0 (M ) has unique presentation in the base ( )1 2e , e

r r
. Therefore is 

 
                                            1 1 11 1 21 2p Ae e e= = σ + σ

r r r r
 

                                                                                         }                                                             (3) 
                                           2 2 12 1 22 22p Ae e e= = σ + σ

r r r r
. 

 
Here by the operator A and the base ( )1 2e , e

r r
 are determined complete the scalars σij (i,j =1,2). The 

stress vector p
r

now can be expressed in the form 

                                                  
2 2

i ij i
i 1 j 1

p a e
= =

= σ∑∑
r r

,                                                                          (4) 

where ai are the cosines direction of the normal n
r

 the plane in which acting the stress vector p
r

.    
By using the characteristics  

                                                                                                                     ' '
1 1 1 2 2e a e , e a e= =
r r r r

2

to (4), is obtained equation  

                                                  
2 2

'
ij i

i 1 j 1
p e

= =
= σ∑∑

r r
,                                                                             (5) 

which with (3) gives 
 
                                      ' ' ' '

1 2 1 2p Ae Ae A(e e ) An= + = + =
r r r r r r

                                                            (6) 
 
the stress vectors p

r
 as the result acting of linear operator  A on normal of the plane.  
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3. EXISTENCE PRINCIPAL DIRECTIONS OF NORMAL STRESSES 
 
Because of the conjugation of the shear stress σij = σji (i ≠ j), the matrix   
 

                                                      A = 11 12

21 22

σ σ
σ σ

                                                                         (7) 

 
of the linear operator A is symmetrical. The symmetry of the matrix A of the linear operator A 
withdraws and the symmetry of the linear operator A. For operator A is said that is symmetrical as 
is  

                                                           A x ⋅ y = x ⋅ A y                                                                     (8) 

for everything the x, y ∈ X0 . 
For symmetrical operator A : X0 → X0 the real numbers σ1 and σ2  and the orthonormal base (e1, 
e2) of the space X0 exist such that is  
 
                                               A e1 = σ1 e1,    A e2 = σ2 e2 .                                                              (9) 
 
For the proof of the relations (9), beside the symmetry of linear operator A, is used in fact that in 
the space X0 are every tree vectors linear dependent and that two linear independent vectors exist, 
what different is said that is the X0 two-dimensional vector space. Separately between the vectors 
e, A e, A2 e exists linear dependent for every vector e, A e, A2 e. If e ≠ 0 is. Then two possibilities 
exist. 
  1.The vector e and A e are linear dependent. The real number σ1 exists such that is A e1 = σ1 e. 
The vector e1 = e e  is unit vector and Ae1 = σ1 e1. If  e2 is unit vector, which is perpendicular to 
the e1, then is   

                               e1 ⋅ A e2 = A e1 ⋅ e2 = (σ1 e1 ) ⋅ e2 = σ1 (e1 ⋅ e2 ) = 0. 

 
Since the vector A e2 is perpendicular to the e1, he must be collinear with the e2; well the real 
number σ2 exists such that is A e2 = σ2 e2. In this case the relations (9) are proved. 
  2. The vector e and A e are linear independent. Because of the dependent of the vectors e, A e, A2 
e in the plane, the real number α and β exist such that is A2 e = α A e + β e, i.e.   
 

                                                        P (A )e = 0,                                                                             (10) 

where 

                                                    P (λ ) = λ2 - α λ - β                                                                    (11) 

 
is second-order polynomial with the real coefficients. 
If the supposition about the symmetry of the linear operator A is used, it is proved now that the 
noughts of polynomial (11) are real, and this is the central part of the proof of the relation (9). If it 
is supposed contrary, that b  + i t (t ≠ 0 ) (b , t ∈ R ) is nought of polynomial (11), i.e. that is  
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(b + i t )2 -α ( b + i t ) - β = 0. From here, with crossing to the conjugate complex numbers, is 
given (b - i t )2 - α (b - i t ) - β = 0, i.e. and the number b - i t is nought of the polynomial (11), now  
 
                                   P (λ ) = [λ - (b + i t )][λ - (b - i t )] = (λ - b )2 + t2, 
 
together with (10) gives  
                                                     (A - b I )2 + t2 e = 0.                                                                   (12) 
The operator A - b I is symmetrical, this can be seen from (A - σ I ) x ⋅ y = (A x - b x ) ⋅ y = A x ⋅ y 
- b x ⋅ y = A x ⋅ y - b x ⋅ y = x ⋅ A y – x ⋅ b y = x ⋅ (A - b I ) y. 
 
If (12) is multiplies scalar with the e, then because of      
 
               (A - b I )2 e ⋅ e = (A - b I ) (A - b I ) e ⋅ e = (A - b I ) e ⋅ (A - b I ) e = |(A - b I ) e|2  
 
is obtained 

                                                      |(A - σ I ) e|2 + t2 |e|2 = 0.                                                          (13) 

 
From (13) is obtained that is |(A - b I ) e| = 0 and t2 |e| = 0. How is e ≠ 0, then is t = 0 and this is 
contrary to the supposition that is t ≠ 0. In this way is commode to the contradiction. So was 
proved that polynomial (11) has only real noughts. 
Let σ1 and σ2  are nought of polynomial (11). It is affirmed that is σ1 ≠ σ2 . Of course σ1 = σ2  
would pull P (λ ) = (λ -σ1 )2, (10) would go over to in (A – σ1 I )2 e = 0. From here the 
multiplication with the e is obtained |(A – σ1 I ) e| = 0, and this is given  A e – σ1 e = 0. This is 
contradictory with the supposition that are e and A e the independent vectors. Well is P (λ ) = (λ - 
σ1 ) (λ - σ2 ) with σ1 ≠ σ2 , then (10) pulls  

                                                     ( A – σ1 I ) (A – σ2 I ) e = 0.                                                      (14) 

If is putted 

                         v1 = (A – σ1 I ) e = A e – σ2 e,   v2 = (A – σ1 I ) e = A e – σ1 e. 

 
At that time (14) pulls (A – σ1 I ) v1 = 0 and (A – σ2 I ) v2 = 0, i.e.  
 
                                                    A v1 = σ1 v1,   A v2 = σ2 v2.                                                        (15) 
 
Since v1 ≠ 0 and v2 ≠ 0, because of the independent of the vectors e and A e, the vectors v1 and v2 
are eigenvectors of operator A which corresponding to the eigenvalues σ1 and σ2 respectively.  
         The perpendicularly of the vectors v1 and v2 is obtained from (15) such that the first equality 
is multiplied with v2, the second with v1 and the results are deducted. In this way is obtained   
 
                                         A v1 ⋅ v2 – A v2 ⋅ v1 = σ1 v1 ⋅ v2 – σ2 v2 ⋅ v1.                                           (16) 
 
Because of the symmetry of operator A the left side vanishes in (16), the right side goes over to 
 (σ1 – σ2 ) v1 ⋅ v2  = 0, what because of σ1 ≠ σ2 given v1 ⋅ v2 = 0. If e1 = 1 1v v  and e2 = 2 2v v  is 
putted, it is obtained the orthonormal base (e1, e2 ) of the space X0 for which (9) is worth. 
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4. INTENSITY AND LOCATION OF PRINCIPAL NORMAL STRESSES  
 
         The intensity of the normal component σn of the total stress p

r
 is obtained scalar product of 

the stress vector (6) with the unit vector n
r

of the observed plane, i.e.   
                    σn = A n ⋅ n = A (cos α1 e1 + cos α2 e2 ) ⋅ (cos α1 e1 + cos α2 e2 ) 
                                      = (cos α1 A e1 + cos α2 A e2 ) ⋅ (cos α1 e1 + cos α2 e2 ) ⇒ 
 

σn= cos α1 (σ11 e1 + σ21 e2 ) ⋅ (cos α1 e1 + cos α2 e2 ) 
      + cos α2 (σ12 e1 + σ22 e2 ) ⋅ (cos α1 e1 + cos α2 e2 ) 

 
or written down short 

                         (σ
2 2 2 2

n i ji j j j ji i j
i 1 j 1 j 1 i, j 1

( x a e ) ( x e ) x x
= = = =

σ = ⋅ = σ∑ ∑ ∑ ∑
r r

ij = σji ),                                 (17) 

where the characteristic xi = cos αi (i =1,2) are introduced. The function (polynomial) 

                       σn (x1 , x2 ) = = σ
2

ji i j
i, j 1

x x
=
σ∑ 11 x1

2 + 2 σ12 x1 x2 + σ22 x2
2                                      (18) 

is named quadratic form of two variables. For the matrix 
 

                                              A =                                                                               (19) 11 12

12 22

σ σ⎡ ⎤
⎢σ σ⎣ ⎦

⎥

 
is said that the matrix is of form (18). Linear operator A : X0 → X0 which corresponding to the 
matrix (19) is symmetrical. For symmetrical linear operator A the right orthonormal base ( )  

exists and the real numbers σ
1 2f , f
r r

1 and σ2  such that is   
 
                                        A f1 = σ1 f1,     A f2 = σ2 f2.                                                                     (20) 
 
The base  emerges from the base (e1 2(f , f )

r r
1, e2 ) with the rotation for the angle ϕ for which is cosϕ 

= f1 ⋅ e1. If x = x1 e1 + x2 e2 = x1
’ f1 + x2

’ f2 is anyone vector from the X0, then is  

                              x1
’ = x1 cos ϕ + x2 sin ϕ,    x2

’ = - x1 sin ϕ + x2 cos ϕ .                                     (21) 

Since  
                   A n ⋅ n = (x1

’ A f1 + x2
’ A f2 ) ⋅ (x1

’ f1 + x2
’ f2 ) ⋅ σ1 (x1

’ )2 + σ2 (x2
’ )2,                  

 
it is fended that worth 
 
                           σ11 x1

2 + 2σ12 x1 x2 + σ22 x2
2 = σ1 (x1 cos ϕ + x2 sin ϕ )2

                                                                        + σ2 (- x1 sin ϕ + x2 cos ϕ )2                                   (22) 
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for all the real number x1 and x2. The compassion of the polynomial coefficients on the left side in 
(22) with coefficients, which are obtained after squarer on the right side in (22), is obtained   
 
                                                σ1 cos2ϕ + σ2 sin2ϕ = σ11  
                                               σ1 sin2ϕ + σ2 cos2ϕ = σ22   }                                                           (23) 
                                             (σ1 - σ2 ) sin ϕ cos ϕ = σ12. 
From (23) is obtained 
 
                        det A = σ11 σ22 – σ12

2 = [σ1
2 + σ2

2 – (σ1 - σ2)2] sin2ϕ cos2ϕ  
                                  + σ1 σ2 (cos4ϕ + sin4ϕ ) = σ1 σ2 (cos2ϕ + sin2ϕ )2 ⇒ 
 
                                                det A = σ11 σ22 – σ12

2 = σ1 σ2.                                                       (24) 
 
Adding the first two equation in (23) gives 
 
                                                  tr A = σ11 + σ22 = σ1 + σ2,                                                           (25) 
 
where with tr A is denoted the addition diagonal elements of the matrix A. This number is cooled 
the trace of the matrix A. From (24) and (25) it is seen that are the eigenvalues σ1 and σ2 of 
operator A nought of polynomial σ2 – tr A + det A; then can be taken that is 
 

                                    σ1 = 1
2
{tr A – [(tr A)2 – 4 det A]1 2 }, 

                                                                                                     }                                                 (26) 

                                     σ2 = 1
2
{tr A - [(tr A)2 + 4 det A]1 2 }. 

In this place can be descried that is (tr A)2 – 4 det A = (σ11 – σ22 )2 + 4 σ12
2. 

If σ12 ≠ 0, then with the deduction the second equation of the first equation in (23) is obtained (σ1 - 
σ2 ) cos 2ϕ =σ11 – σ22 , what together with the third equation (σ1 - σ2 ) sin 2ϕ = 2 σ12 from (23) 
leads on 

                                                  ctg 2ϕ = 11 22

12
.

2
σ −σ

σ
                                                                    (27) 

From (27) is calculated the angle ϕ  for which the base (e1, e2) ought to rotate, and from (26) the 
numbers such that (22) is worth.  
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5. CONCLUSION        
 
Analysis the state of stress is considerable simplified by using of linear operator. The methods of 
vector algebra is used here for the study the state of stress at a point in the place usual the study by 
methods of tensor analysis. In this way complete proceeding is approached a broad circles of 
interested party. On the other hand, linear operator in fact is mixed second-order tensor. 
In the case of the space stress at everyone point of the deformable media, the principal direction 
exists, always, which linear operator leaves alone. Such direction needn't exists at the plane stress, 
in general case. The symmetry of the stress tensor renders and in a plane the existence the 
principal directions of the normal stress. For the proof of this assertion, save the symmetry of 
linear operator, as indispensable fact is used that in the two-dimensional vector space are anyone 
tree vectors linear dependent.  
At all events, these facts are well known. Meanwhile, here is used the original access to this 
problem.    
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OSOBINE VEKTORA NAPONA 
U USLOVIMA RAVNINSKIH NAPONA 

 
Hasanbegović Suad 

 
REZIME 

 
U radu se analizira ravninsko naponsko stanje. U slučaju prostornog naponskog stanja, može se 
dokazati da u bilo kojoj tački deformabilne sredine uvijek postoji bar jedan glavni pravac[1]. U 
opštem slučaju, kod ravninskog naponskog stanja takav pravac nemora postojati.Simetričnost 
linearnog operatora (tenzora napona) obezbjeđuje i u ravnini postojanje glavnih pravaca 
normalnih napona. U dokazivanju navedene tvrdnje, osim simetričnosti linearnog operatora, kao 
bitna činjenica koristi se da su u dvodimenzionalnom prostoru svaka tri vektora linearno zavisna.  
Analiza osobina vektora napona ovdje se provodi posredstvom linearnog operatora umjesto 
uobičajene analize posredstvom tenzora napona. Međutim, linearan operator je ustvari mješoviti 
tenzor drugog ranga i njegovo izučavanje je isto što i izučavanje mješovitog tenzora drugog 
ranga. Ovaj pristup omogućava analizu naponskog stanja metodama linearne algebre što, zbog 
jednostavnosti pristupa, omogućava praćenje analize širem krugu zainteresovanih.     
U teoriji stanja napona, stanje napona u bilo kojoj tački deformabilne sredine u potpunosti je 
određeno linearnom vektorskom funkcijom. Uobičajeno je za funkciju koja ima domenu i 
kodomenu u vektorskom prostoru zvati operatorm. 
 Najprije se pokazuje da su nule polinoma drugog reda realne. Poslije toga daju se dokazi o 
postojanosti i položaju glavnih pravaca normalnih napona koji su međusobno upravni. Konačno 
se omogućava, na veoma jednostavan način, izračunavanje vrijednosti glavnih normalnih napona. 
Svakoko, navedene činjenice su poznate. Međutim, ovdje se radi o originalnom pristupu ovoj 
problematici.  
               
 
 
                   
 
 
 

Journal for Technology of Plasticity, Vol. 28 (2003), Number 1-2 


