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ABSTRACT 
 

Seth’s transition theory is applied to the problems of finitesimal deformation in a transversely 
isotropic thin rotating disc with rigid shaft. Neither the yield criterion nor the associated flow rule 
is assumed here. The results obtained here are applicable to transversely isotropic material and 
isotropic materials. If the additional condition of incompressibility is imposed, then the expression 
for stresses corresponds to those arising from Tresca’s yield condition. It has been observed that 
rotating disc made of isotropic material required high percentage increase in angular speed to 
become fully plastic as compared to rotating disc made of transversely isotropic material. Radial 
stresses for isotropic material is maximum at the internal surface whereas for transversely 
isotropic material circumferential stresses is maximum at the external surface for fully-plastic 
state. 
Keywords: Disc, Shaft, Transversely Isotropic, Stresses, Displacement, Yielding  
 
 
1. INTRODUCTION 
 
This paper is concerned with finitesimal deformation of rotating thin circular disk made of 
transversely isotropic material. There are many applications of rotating disks in science and 
engineering. As typical examples, we mention, steam and gas turbines, rotors, compressors,  
flywheels, computer disc drives and high speed gear engine etc. In the design of modern 
structures, increasing use is being made of materials which are transversely isotropic. The analysis 
of stress distribution in the circular disk rotating is important for a better understanding of the 
behavior and optimum design of structures. Solution for thin isotropic discs can be found in most 
of the standard elasticity and plasticity standard text books [1-8].  Güven [9] found the elastic - 
Plastic rotating disk with rigid inclusion under the assumption of Tresca’s yield condition, its 
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associated flow rule and linear strain hardening. To obtain the stress distribution, Guven matched 
the elastic-plastic stresses at the same radius r = z of the disc. Perfect elasticity and ideal plasticity 
are two extreme properties of the material and the use of an ad-hoc rule like yield condition 
amounts to divide the two extreme properties by a sharp line which is not physically possible. 
When a material passes from one state to another qualitatively different state, transition takes 
place. Since this transition is non-linear in character and difficult to investigate, workers have 
taken certain ad hoc assumptions like yield condition, incompressibility condition and a strain law, 
which may or may not valid for the problem. Sharma etl. [10] solved problems in elastic-plastic 
transition of transversely isotropic thin rotating disc by using Seth’s transition theory. Seth’s 
transition theory [11] does not require these assumptions and thus poses and solves a more general 
problem, from which cases pertaining to the above assumptions can be worked out. This theory 
utilizes the concept of generalized strain measure and asymptotic solution at the critical points or 
turning points of the differential equations defining the deformed field and has been successfully 
applied to lager number of the problems [9-14]. Seth [12] has defined the generalized principal 
strain measure as: 
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∫ , (i = 1, 2, 3)   (1) 

where n is the measure and 
A

iie  are the Almansi finite strain components. In this research paper, 
we investigate the problem of finitesimal deformation in a transversely isotropic thin rotating disc 
with rigid shaft by using Seth’s transition theory. Results have been discussed numerically and 
depicted graphically. 
 
 
2. MATHEMATICAL MODEL 
 
Let us we consider a thin disc of constant density with central bore of radius a and external radius 
b. The annular disc is mounted on a shaft. The disc is rotating with angular speed ω  about an axis 
perpendicular to its plane and passed through the center as shown in Fig. 1. The thickness of disc 
is assumed to be constant and is taken to be sufficiently small so that it is effectively in a state of 
plane stress, that is, the axial stress zzT  is zero.  
 
2.1 Boundary conditions 
 
The disk considered in the present study having constant density and mounted on shaft. The inner 
surface of the disk is assumed to be fixed to a shaft. The outer surface of the disk is applied 
mechanical load. Thus, the boundary conditions of the problem are given by: 
 

(i) r = a , 0u =   
(ii)  r = b, 0rrT =        (2) 

where u and rrT  denote displacement and stress along the radial direction.     
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Fig.1 – Geometry of rotating disck with shaft 

 
2.2 Governing equations 
 
The components of displacement in cylindrical polar co-ordinates are given by: 
 

 ( )1u r β= − ; 0v = ; w dz=       (3) 

where β  is position function, depending  on 2 2r x y= +  only, and d is a constant. 
The finite strain components are given by [12] as:  
 

( )2'1 1
2

A
rre rβ β⎡ ⎤= − +⎢ ⎥⎣ ⎦

,
  

21 1
2

A
eθθ β⎡ ⎤= −⎣ ⎦ ,

 

( )21 1 1
2

A
zze d⎡ ⎤= − −⎢ ⎥⎣ ⎦

,  0
A A A

r z zre e eθ θ= = =    (4)  

where d drβ β′ =  and meaning of superscripts “A” is Almansi.  
By substituting equation (4) into equation (1), the generalized components of strain are:  
 

( )'1 1
n

rre r
n

β β⎡ ⎤= − +⎢ ⎥⎣ ⎦
 

 

1 1 ne
nθθ β⎡ ⎤= −⎣ ⎦  ,

 

( )1 1 1 n
zze d

n
⎡ ⎤= − −⎢ ⎥⎣ ⎦

 
 

0r z zre e eθ θ= = =    (5) 
 

The stress-strain relations for transversely isotropic material are given [17]: 
 

 11 11 66 13( 2 )rr rr zzT C e C C e C eθθ= + − +  
 11 66 11 13( 2 ) rr zzT C C e C e C eθθ θθ= − + +  

13 13 33 0zz rr zzT C e C e C eθθ= + + =  
0zr z rT T Tθ θ= = =        (6)  
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Using equation (4) in equation (6), the strain components in terms of stresses are obtained as: 
 

( )
2 2

2 11 33 13 66 33
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11 33 13

21 1 11
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where 
2

11 33 13 66 33
66 2

11 33 13
4

C C C C C
E C

C C C

⎛ ⎞− −
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is Young’s modulus. 

By substituting equations (5) into equations (6), we get:  
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0r z zr zzT T T Tθ θ= = = =        (8) 

where ( )2
11 13 33A C C C= − . 

Equations of equilibrium are all satisfied except: 

( ) 2 2 0rr
d rT T r
dr θθ ρω− + =       (9) 

where ρ  is the density of material.  

By substituting equations (8) into equation (9), we gets a non-linear differential equation with 
respect to β : 

{ }
2 2

1 1 662
(1 ) 1 (1 ) 1 (1 )n n n n nCdP rP nP P P P

d A nA
ρωβ β

β
+ − ⎡ ⎤⎧ ⎫⎡ ⎤+ = + + − + − + +⎢ ⎥⎨ ⎬⎣ ⎦⎩ ⎭⎢ ⎥⎣ ⎦

                         (10) 

where r Pβ β′ = (P is function of β  and β  is function of r). The transition points of β  in 
equation (10) are 1P →−  and P →±∞ . 
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3. SOLUTION OF THE PROBLEM 
 
It has been shown that the asymptotic solution through the principal stress [10, 13 - 32] leads from 
elastic to plastic state at the transition point P →±∞ . If the transition function R  is defined as: 

( ){ } ( )662 1 1 2 1 1n nn nCAR T P P
n nθθ β β⎡ ⎤ ⎡ ⎤≡ = − + + − − +⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

   (11) 

Taking the logarithmic differentiation and substitute the value of /dP dβ  from equation (10) in 
equation (11), one gets: 

( ){ } ( )

( ){ }

66 66 66

2 22 2
2 266 66 66

2 2 2

2 2 4
1 1 1

(log )
4 4 2

1 1

n nn n n n

nn n
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nA nA Ad AR
dr rR C C Cr P P r

A nA A A

β β β β

ρω β β ρω

⎛ ⎞
− + + + − + +⎜ ⎟
⎜ ⎟= −
⎜ ⎟
+ − − + − −⎜ ⎟
⎝ ⎠

 (12) 

Asymptotic value of equation (12) as P →±∞ and integrating, we get 
 

2
1

CR K r−=         (13) 

where 2 662 /C C A= , ( )2
11 13 33A C C C= − and 1K  is a constant of integration, which can be 

determined by the boundary condition. 
Using equation (13) in equation (11), we have 

2
1

CT K rθθ
−=          (14) 

By substituting equation (14) into equation (9), one gets: 
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where 2K  is a constant of integration, which can be determined by the boundary condition. 
Substituting equation (14) and (15) in second equation of (7), we get: 

( ) 2 2
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Substituting equation (16) in equation (3), we get 
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where 
2

11 33 13 66 33
2 2

11 33 13

2
1

C C C C C
C

C C C
⎛ ⎞− −

− = ⎜ ⎟−⎝ ⎠
, ( )66 22 2E C C= −  is the Young’s modulus. By applying 

boundary conditions (2) in equations (15) and (17), we gets: 2 3
2 / 3K aρω=  and 
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b a C
K

b b

ρω
−

− −
= . Substituting values of constants 1K   and 2K  in equations (14), (15), 

and (17) respectively, we get the transitional stresses and displacement as: 
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From equations (18) and (19), we get 
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    (21) 

 
Initial Yielding: From equation (21), it is seen that rrT Tθθ−  is maximum at the internal surface 
(that is at r = a), therefore yielding will take place at the internal surface of the disc and equation 
(21) gives: 
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2 3 3 1
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where Y is the yielding stress. Angular velocity iω  required for initial yielding is given by: 
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i

Y
b

ω
ρ

Ω
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Fully-plastic state: The disc become fully plastic state ( )2 1/ 2; 0C C→ →  at the external 
surface and equations (21) becomes: 
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where Y ∗  is the yielding stress. The angular velocity fω  for fully-plastic state is given by:    
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= . We introduce the following non-dimensional components as:
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plastic transitional stresses, displacement and angular speed from equations (18),(19), (20) and 
(22) in non-dimensional form become: 
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Stresses, displacement and angular speed for fully- plastic state ( )2 0C →  are obtained from 
equations (24) and (23) become: 
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3.1 Isotropic case 
 
For isotropic materials, the material constants reduce to two only, i.e. 11 22 33C C C= = , 

12 21 13 31 23 32 11 66( 2 )C C C C C C C C= = = = = = −  and 1 2 3α α α α= = = .In term of constants λ  
and μ , these can be written as:  
 

12C λ= , 11 2C λ μ= +  and ( )66 11 12
1
2

C C C μ= − ≡      (27) 

 
Elastic-plastic transitional stresses are obtained by using equation (27) in equations (18) - (20), 
(22) as: 
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−
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where ( ) ( )22 2 ,1 1 / 2C C C Cμ λ μ= + − = − −  .     
                        
 
3.2 Fully-plastic state (isotropic case) 
 
For fully plastic state ( 0C → ), equation (28) becomes: 
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       (30) 

 
The disc become fully plastic state ( 2 1/ 2C →  or 0C → ) at the external surface and equations 
(21) becomes:  
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where Y ∗  is the yielding stress.[  ] The angular velocity fω  for fully-plastic state is given by   
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where 0 /R a b=  and f
f

Y
b

ω
ρ

∗Ω
=   

Equations (28) – (31) are same as given by Thakur [20]. 
 
 
Table 1. Elastic constants ijC ( in units of 1010 N/m2). 
 

Materials 44C  11C  12C  13C  33C  

Transversely Isotropic Material 
( 2C =0.69, Beryl) 0.883 2.746 0.980 0.674 4.69 

Isotropic Material 
( 20.33 0.50Cσ = = , Brass) 0.999997 3.0 1.0 1.0 3.0 

Transversely Isotropic Material 
( 2C =0.64, Magnesium) 1.64 5.97 2.62 2.17 6.17 

 
 
Table 2. Angular speed required for initial yielding and fully plastic state.   
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Magnesium 
Beryl 

Transversely 
Isotropic 
Material 

0.64 
0.69 

3.080019 
3.417748 

3.428571 
3.428571 

0.15821 % 
5.50666 % 

Brass Isotropic 
Material 0.5 4.848732 6.857142 18.92072% 
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4. NUMERICAL ILLUSTRATION AND DISCUSSION 
 
As a numerical example, elastic constants ijC  have been given in table 1 for transversely isotropic 
materials (Magnesium and Beryl) [19] and isotropic material [20] (Brass, 0.33σ =  ). It can also 
be seen from table 2, that rotating disc made of isotropic material ( i.e. Brass) required high 
percentage increase in angular speed to become fully plastic as compared to rotating disc made of 
transversely isotropic materials (i.e. Beryal and Magnesium). Curves have been drawn in Fig.2 
between angular speed 2

iΩ required for initial yielding along the radii ratios 0R  = a/b. It has been 
observed that rotating disc made of isotropic material required higher angular speed to yield at the 
internal surface as compared to disc made of transversely isotropic materials. In Fig.3 and Fig.4, 
curves have been drawn between stresses distribution and displacement for initial yielding and 
fully plastic state along the radius ratio R = r / b . Form fig. 3, it has been observed that isotropic 
material required maximum stresses and displacement as compare to transversely isotropic 
materials. The radial stress is maximum at the internal surface for both isotropic and transversely 
isotropic material. In figure 4, it is seen that radial stresses for isotropic material is maximum at the 
internal surface whereas for transversely isotropic material circumferential stress is maximum at 
the external surface. Therefore, rotating disc made of transversely isotropic material is on the safer 
side of the design as compared to disc made isotropic material. 
 

 
 

Fig. 2 - Angular speed required for initial yielding along the radii ratio Ro= a/b. 
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Fig-3 - Stresses distribution and displacement for initial yielding along the radius ratio R = r/b. 
 
 

 
 
Fig.-4 - Stresses distribution and displacement for fully-plastic state along the radius ratio R = r/b 
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5. CONCLUSION 
 
It has been observed that rotating disc made of isotropic material  required high percentage 
increase in angular speed to become fully plastic as compared to rotating disc made of transversely 
isotropic material. The thin rotating disk made of transversely isotropic material yields at a higher 
angular speed as compared to disk made of isotropic material but isotropic disk required high 
percentage increase in angular speed to become fully plastic from initial yielding as compared to 
transversely isotropic material. Radial stresses for isotropic material is maximum at the internal 
surface whereas for transversely isotropic material circumferential stresses is maximum at the 
external surface for fully-plastic state. 
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REZIME 
 

Problem konačnih deformacija u transferzalno izotropnom tankom rotirajućem disku analiziran je 
pomoću Sethove tranzicione teorije. Analiza je sprovedena bez uključivanja uslova plastičnosti i 
zakona tečenja. Dobijeni rezultati su primenljivi kako za transverzalno izotropni materijal tako i 
za izotropne materijale uopšte. Ako se u analizu uvede dodatni uslov inkompresibilnosti , dobijeni 
obrasci za raspored napona poklapaju se sa Treskinim uslovom plastičnosti. Uočava se da 
rotirajući disk urađen od izotropnog materijala zahteva veći procenat povećanja ugaone brzine  
kako bi postao potpuno plastičan nego što je to slučaj kod diska napravljenog od transverzalno 
izotropnog materijala. Radijalni naponi za izotropni materijal su maksimalni na unutrašnjoj 
površini dok su u slučaju transverzalno izotropnih materijala cirkumferentni naponi najveći na 
spoljnoj površini za potpuno plastično stanje diska. 
U radu je numeričkom analizom verifikovan prikazani teoretski pristup na primeru magnezijuma 
(transverzalno izotropan materijal) i bronze (izotropan materijal). 
Ključne reči: disk, vratilo, transferzalno izotropni materiali, naponi, pomeranja, uslov plastičnosti 


