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ABSTRACT 
 

Elastic-plastic transitional stresses in a thin rotating disk with edge loading have been studied by 
using Seth’s transition theory. Results have been discussed and presented graphically. It has been 
seen that higher value of angular speed is required for disc without edge loading. With the effect 
of edge loading, disc required lower angular speed. It has been seen that for incompressible 
material  (i.e. rubber) higher angular speed is required for initial yielding as compare to disc 
made of compressible material (i.e. Lead, Copper and Steel). Rotating disk is likely to fracture by 
cleavage close to the inclusion at the bore. 
Key words: Rotating Disc, Load, Stresses, Transitional, material. 
 
 
1. INTRODUCTION 
 
Rotating disks are an essential part of the rotating machinery structure, e.g. rotors, turbines, 
compressors, flywheel and computer’s disc drive. The analytical procedures presently available are 
restricted to problems with simplest configurations. The use of rotating disk in machinery and 
structural applications has generated considerable interest in many problems in domain of solid 
mechanics. Solutions for thin isotropic disks can be found in most of the standard elasticity and 
plasticity textbooks [1-5]. Guven [6] found the elastic-plastic stresses in a rotating annular disk of 
variable thickness and variable density under the assumptions of Tresca’s yield condition, is 
associated with flow rule and linear strain hardening. To obtain the stress distribution, Guven 
matched the elastic-plastic stresses at the same radius r = z of the disc. Perfect elasticity and ideal 
plasticity are two extreme properties of the material and the use of ad-hoc like yield condition 
amount to divide the two extreme properties by a sharp line which is not physically possible. 
When a material passes from one state to another qualitatively different state, transition takes 
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place. Since this transition is non-linear in character and difficult to investigate, researchers have 
taken certain ad-hoc assumptions like yield condition, incompressibility condition and a strain law 
which may or may not be valid for the problem. Seth’s transition theory [7] does not require these 
assumptions and thus poses and solves a more general problem from which cases pertaining to the 
above assumptions can be worked out. This theory utilizes the concept of generalized strain 
measure and asymptotic solution at the critical points or the turning points of the differential 
equation defining the deformed field and has been successfully applied to a large number of the 
problems [7-14]. Seth [8] has defined the generalized principal strain measure as: 
 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=⎥

⎦

⎤
⎢
⎣

⎡
−= ∫

−
2

0

1
2

211121

n
A

ii

e A

ii

n
A

iiii e
n

edee

A

ii

, (i =1,2,3 )   (1) 

where ‘n’ is the measure and ii
A
e  is the Almansi finite strain components [8]. For n = -2, -1, 0, 1, 2 

it gives Cauchy, Green Hencky, Swainger and Almansi measures respectively. In this paper, we 
investigate the problem of effect of stresses in a thin rotating disk with load edge for different 
materials by using Seth’s transition theory. Results have been discussed and presented graphically. 
 
 
2. MATHEMATICAL MODEL 
 
We considered a thin annular disk of constant density with central bore of radius a and outer 
radius b as shown in Fig. 1. The disc, produced of material of constant density, is mounted on an 
edge loading. The disc is rotating with angular speed ω  about a central axis perpendicular to its 
plane. The thickness of disc is assumed to be constant and is taken sufficiently small so that the 
disc is effectively in a state of plane stress, that is, the axial stress zzT  is zero. The origin of the 
polar coordinate system θ−r is assumed to be located at the centre of the disk and hole. 
 
Boundary Conditions 
The disk considered in the present study is with variable Load. The inner surface of the disk is 
assumed to be fixed to a shaft. The outer surface of the disk is applied mechanical load. Thus, the 
boundary conditions of the problem are given by: 
 

(i) 0=rrT  at  r = a 
(ii)  0TTrr =   at r = b        (2) 

 
where rrT  and 0T denote stress along the radial direction and load.  
 
Formulation of the Problem  
The displacement components in cylindrical polar co-ordinate are given by [8]:   

 )1( β−= ru ,v = 0,  w = dz       (3) 

where β  is position function, depending on r = 22 yx +  only, and d is a constant. 



45 

Journal for Technology of Plasticity, Vol. 38 (2013), Number 1 

 

 
Fig 1a - Schematic diagram of a rotating disk 

with concentric circular hole 
Fig.1b - Geometry of rotating disc 

 
The finite strain components are given by Seth [8] as: 
 

 ( )[ ]21
2
1 ββ +′−= re rr

A
,   [ ]21

2
1 βθθ −=

A
e  

[ ]2)1(1
2
1 de zz

A
−−= ,   θr

A
e = z

A
eθ = zr

A
e  = 0   (4) 

 
where drd /ββ =′  and meaning of superscripts “A” is Almansi.  
By substituting eq. (4) in eq. (1),  the generalized  components of strain become: 
 

( )[ ]n
rr r

n
e ββ +′−= 11 ,  [ ]n

n
e βθθ −= 11 ,  

[ ]n
zz d

n
e )1(11

−−= ,  0=== zrzr eee θθ     (5) 

The stress–strain relations for isotropic material are given [5]: 

 
 ijijij eIT μλδ 21 += ,  (i, j = 1, 2, 3)       (6)  
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where ijT  are stress components, λ  and μ  are Lame’s constants, kkeI =1  is the first strain 

invariant, ijδ  is the Kronecker’s delta. Equation (6) for this problem becomes: 
 

[ ] rrrrrr eeeT μ
μλ

λμ
θθ 2

2
2

++
+

=  

[ ] θθθθθθ μ
μλ

λμ eeeT rr 2
2

2
++

+
=       (7) 

.0==== zzzrzr TTTT θθ

                                    
 

 
By substituting eq. (5) in eq. (7), the stresses are obtained as: 
 

( )( ){ }[ ],121232 nn
rr PCCC

n
T +−+−−−= βμ  

( )( ){ }[ ],112232 nn PCCC
n

T +−+−−−= βμ
θθ     (8) 

0==== zzzrzr TTTT θθ   

where C is the compressibility factor of the material in term of Lame’s constant, given by  
μλμ 2/2 +=C . The equations of motion are all satisfied except: 

 
( ) 022 =+− rTrT

dr
d

rr ρωθθ        (9) 

where ρ  is the density of the material of the rotating disc. By using eqs. (8) in eq. (9), one gets a 
non- linear differential equation for β as: 
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where C  is the compressibility factor of the material in term of Lame’s constant, given by  
μλμ 2/2 +=C  and P is dependence function of β  and β  is dependence function of r only. 

From eq. (9), the turning points of β  are 1−→P  and ±∞ .  
 
Solution through the principal stresses 
For finding the plastic stress, the transition function is taken through the principal stress (see Seth 
[7, (see Seth [7,8],  Gupta and pankaj  [9, 10, 11], Pankaj Thakur [12- 23]) at the transition point  

1±∞→ ,τ . The transition function τ  is defined as: 
 



47 

Journal for Technology of Plasticity, Vol. 38 (2013), Number 1 

 
( )( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−+

−
−−== n

n

PC

C
C

nT
11

2
23

2
β

μ
τ θθ            (11) 

 
whereτ  is function or r only and τ  is dimension. 
Taking the logarithmic of eq. (11) with respect to r, one gets: 
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Differentiating with respect to r, one gets:  
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where P is function of β , β  is function of r and .Pr ββ =′ Then 
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By substituting the value of βddP /  from eq. (10) into eq. (12) and by taking asymptotic value P
±∞→ , one gets after integration:    
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−
= 2

1

1          (13) 
 
where K1 is a constant of  integration ,which can be determined by boundary condition and by 

( ) ( )CC −−= 21ν  is the Poisson’s ratio. From eq. (11) and (13), it follows:  
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By substituting eq. (14) into eq. (8), one gets: 
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where K2 is a constant of integration, which can be determined by boundary condition. By 
applying boundary condition (2) in eq. (15), one gets: 
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By substituting the value of K1 and K2 into equation (15), one gets: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
=

−
−

−
−

−
−

−
−

3

32

3

32

0

2
1

2
1

2
1

2
1

3
3 r

a
r

a

b

bT

abr

arT
C
C

C
C

C
C

C
C

rr
ρω

ρω
     (16) 



49 

Journal for Technology of Plasticity, Vol. 38 (2013), Number 1 

( ) [ ]

( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−

=

−
−

−
−

−
−

C
C

C
C

C

abC

abbTCr
T

2
1

2
1

33
2

0
2

1

2

3
1 ρω

θθ         (17) 

 
It is seen from eq. (14) that θθT  is maximum at the internal surface, therefore, yielding will take 
place at the internal surface and eq. (14) becomes: 
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and angular speed iω necessary for initial yielding is given by: 
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where YT /00 =σ and ( ) 21/1 ρω Y
b ii Ω= . 

We introduce the following non-dimensional components as:  

 YTbaRbrR rrr /,/,/ 0 === σ , 

 YT /θθθσ = ,  

 Yb /222 ρω=Ω and YT /00 =σ . 

Eqs. (16), (17) and (18) becomes: 
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Eqs. (19) (20) and (21) give elastic-plastic transitional stresses and angular speed for thin rotating 
disc with loading edge. Stresses and angular speed give by eqn. (19) (20) and (21) for fully 
plasticity 0=C become: 
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From eqn. (19) the angular speed if ωω >  for which the disc becomes fully plastic 0=C at r = b 
is given by: 
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where ( )2
11 ρω Y

b ff Ω= . 

 
 
3. RESULTS AND DISCUSSION 
 
Curves have been drawn in Fig. 2, between angular speed required for initial yielding along the 
radius of a disc with and without edge loading. It has been seen that higher value angular speed is 
required for disc without edge loading.  
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With the effect of edge loading, disc required lower angular speed. For incompressible material i.e. 
rubber higher angular speed is required for initial yielding as compare to disc made of Lead, 
copper or Brass and Steel materials.  
 
Table 1: Angular speed required for initial yielding and fully plastic state.  

Load 
Compressibility of 

material 
C 

Angular speed 
required for 

initial yielding 
2
iΩ  

Angular speed 
required for 
fully-plastic 

state 
2
fΩ  

Percentage increase 
in angular speed

( )2 2/ 1 100f iΩ Ω − ×  

0.00 

0 (Rubber material) 

0.25 (Lead material) 

0.5 (Copper or Brass 

material) 

1.420161 

1.383601 

1.336737 

2.008411 

3.008411 

4.008411 

18.92071307 % 

47.45623823 % 

73.16620448 % 

0.101 

0 (Rubber material) 

0.25 (Lead material) 

0.5 (Copper or Brass 

material) 

1.007304 

1.040744 

0.904092 

5.008411 

6.008411 

7.008411 

122.9819459 % 

140.2745975 % 

178.4219483 % 

0.301 

0 (Rubber material) 

0.25 (Lead material) 

0.5 (Copper or Brass 

material) 

0.391589 

0.355029 

0.308165 

8.008411 

9.008411 

10.008411 

352.2285065 % 

403.7234643 % 

469.8898339 % 

 
It can be also seen from Table 1 that for compressible material (i.e. Lead, copper or Brass, Steel  
materials ) higher percentage increased in angular speed is required to become fully plastic as 
compared to rotating disc made of incompressible material (i.e. rubber). With the effect of loading 
edge, the percentage in angular speed much increased as compare to without edge loading.  
Curves have been drawn in figure3, stresses distribution at elastic-plastic transitional state and 
fully plastic state of a disc with edge loading and radius R = r/b. It has been seen that the 
circumferential stresses has maximum value at the internal surface of the rotating disc made of 
rubber material as compare to Lead, Copper or brass and Steel materials. With the effect of edge 
loading stresses must be decreased with increase values of edge load. 
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Fig.2 - Angular speed required for initial yielding along the radius of a disc with and without  
edge loading. 

 

 
 

Fig. 3 - Stresses distribution at elastic-plastic transitional state and fully plastic state of a disc 
with edge loading and radius R = r/b. 

 
 
4. CONCLUSION 
 
It has been seen that higher value of angular speed is required for disc without edge loading. With 
the effect of edge loading disc required lower angular speed. It has been seen that for 
incompressible material i.e. rubber required higher angular speed for initial yielding as compare to 
disc made of  Lead, Copper or Brass and Steel materials. Rotating disk is likely to fracture by 
cleavage close to the inclusion at the bore. 
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REZIME 
 
Rotirajući diskovi su jedan od osnovnih delova rotacionih mašinskih sturktura, kao što su rotori, 
turbine, kompresori, kompjuterski diskovi… Ranije izvedene analitičke procedure su ograničene 
samo na problem jednostavne konstrukcije. U ovom radu vršena je analiza napona u tankom 
rotirajućem disku sa ivičnom silom Naponi su izvedeni su za elasto-plastično i potpuno plastično 
stanje pomoću Seth-ove tranzicione teorije. Dobijeni rezultati su diskutovani i grafički 
prezentovani. Zaključeno je da je veća ugaona brzina neophodna kod diskova bez ivičnih sila. 
Takođe se zaključeno da su za materijale poput gume neophodne veće ugaone brzine za plastično 
tečenje materijala nego za metalne materijale poput olova, bakra i čelika. Veća je i verovatnoća 
da će doći do loma roirajućeg diska na mestima bliži otvoru.  
Ključne reči: naponi na rotirajućem disku, pomeranja, rotirajući disk, ugaona brzina 
 




