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ABSTRACT

Stresses for the elastic-plastic transition and fully plastic state have been derived for a thin
rotating disc with rigid shaft having variable thickness by using Seth’s Transition theory and
results have been discussed and depicted graphically. It has been observed that in the absence of
thickness, rotating disc with inclusion and made of compressible material e.g. Copper, Brass and
Steel, yields at the internal surface at a lesser angular speed as compared to a rotating disc made
of incompressible material e.g. rubber whereas it requires a higher percentage increase in
angular speed to become fully plastic. With the effect of variation thickness, higher angular speed
is required to yield at the internal surface. It has been observed that the radial stress is maximum
at the internal surface. With the effect of variable thickness it increases the value of radial and
circumferential stress at the internal surface for transitional state, whereas it can be seen that
rotating disc having variable thickness increases the values of radial and circumferential stress at
the internal surface for fully-plastic state.
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1. INTRODUCTION

Rotating discs form an essential part of the design of rotating machinery, namely rotors, turbines,
compressors, flywheel and computer’s disc drive etc. The analysis of thin rotating discs made of
isotropic material has been discussed extensively by Timoshenko and Goodier [1] in the elastic
range and by Chakrabarty [2] and Hropertiesfor the plastic range.Their solutionfor the problem of
fully plastic state does not involve the plane stress condition, that is to say, we can obtain the same
stresses and angular velocity required by the disc to become fully plastic without using the plane
stress condition (i.e. =0). Gupta and Shukla [4] obtained a different solution for the fully plastic
state by using Seth’s transition theory and plane stress condition. This theory [5] does not required
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any assumptions like an yield condition, incompressibility condition and thus poses and solves a
more general problem from which cases pertaining to the above assumptions can be worked out. It
utilizes the concept of generalized strain measure and asymptotic solution at critical points or
turning points of the differential equations defining the deformed field and has been successfully
applied to a large number of problems [4,10-15, 17- 33].
Seth [6] has defined the generalized principal strain measure as,
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where ‘n’ is the measure and .is the Almansi finite strain components. For n =-2, -1,0, 1, 2 it gives
Cauchy, Green Hencky, Swainger and Almansi measures, respectively.

Here, Analysis of Elastic-Plastic Transition stresses in a thin Rotating Disc having variable
thickness with rigid shaft is investigated by Seth’s transition theory. The thickness of disc is
assumed to vary along the radius in the form:

h=h(r/b)" 2)

Where 4, is the thickness at » = b and £ is the thickness parameter. Result obtained have been
numerically and depicted graphically.

2. GOVERNING EQUATIONS

We consider a thin disc of variable thickness with central bore of radius @ and external radius b.
The annular disc is mounted on a rigid shaft. The disc is rotating with angular speed of gradually
increasing magnitude around axis perpendicular to its plane and passed through the center as
shown in Figure 1. The thickness h of disc is assumed to be vary radially and is taken sufficiently
small so that the disc is effectively in a state of plane stress, that is, the axial stress is zero.

The displacement components in cylindrical polar co- ordinate are given by [6].

uzr(l—,b’) v=0,w=dz 3)

wherep is function of = ,/x? + y* only and d is a constant.

The finite strain components are given by Seth [6] as:
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where 8’ = df3/dr
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Substituting equation (4) in equation (1), the
generalized components of strain are:
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Where ' = dB/dr

The stress —strain relations for isotropic material are
given by [16]

R Ty = AG, 1, + 2 peey (G,j=123) (6)

A i 4 where 7:.]. and e; are the stresses and strain
components, A and M are lame’s constants and

11 = e, is the first strain invariant, 5l.j is the

\‘@ Kroncecker’sdelta.
I i

Fig. 1 - Geometry of Rotating Disc.

Equations (6) for this problem become,
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Using equation (4) in equation (6), the strain components in terms of stresses are obtained as [16]:
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Ande,=e, =e, =0
Where: E = M and C = 2/
(A+p) A+2u

Substituting equation (5) in equation (7), we get the stress as:
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Where r8'= gP.
Equations of equilibrium are all satisfied except
d 10
L (vhT, )= hT,, + pa*r*h =0 (19)
dr

where p is the density of the material of the rotating disc.
Using equation (9) and (10), we get a non- linear differential equation in 3 as:
rh' ., Al npo’r’
. b-2c-pii-c+@-cxp+1y ]+ . an
+ " [1 —(P+1) - np{l -C+(2-Cc)P+1) }]
where 8" = d3/dr (P is function of Band fis function of r only).

From equation (11), the transition points of /3 are P =—1 and % o0 .The boundary conditions

2-Cupr(P+1)" ap _

are:
u=0atr=aandTrr=0 atr=>b (12)

3. SOLUTION THROUGH THE PRINCIPAL STRESSES

It has been shown[4, 10-15, 17-33] that the asymptotic solution through the principal stress leads

from elastic state to plastic state at transition point P —> £00, we define the transition function R
as:

R:”ZTZ@=[(3—20)—5”{2—C+(1—C)(P+1)”}] (13)

Taking the logarithmic differentiation of equation (13) with respect to r and using equation (11),we
get:
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Taking the asymptotic value of equation (14) at P —> 200 and integrating, we get
Ar’!
h

where A4, is a constant of integration.

R:

From equation (13) and (15) and using equation (2),we have
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Substituting equation (16) in equation (10) using equation (2) and integrating, we get:
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whereB, is a constant of integration.
Substituting equations (16) and (17) in second equation of equation (8), we get
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Substituting equation (18) in equation (3), we get
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where E = is the Young’s modulus.
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Substituting equations (20) and (21) in equations (16), (17), and (19) respectively, we get the

transitional stresses and displacement as
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From equation (25), it is seen that |T o~ T 99| is maximum at the internal surface (that is at » =

a), therefore yielding of the disc takes place at the internal surface of the disc and equation (25)
can be written as:
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The angular speed necessary for initial yielding is given by:
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The disc becomes fully plastic (C — 0)at the external surface and equation (25) becomes:
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The angular speed required for fully plastic state is given by:
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We introduce the following non-dimensional components:
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Elastic-plastic transitional stresses, angular speed and displacement from equations (22), (23), (26)
and (24) in non-dimensional form become:
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Stresses, displacement and angular speed for fully plastic state (C —0), are obtained from
equations (28), (29),(31) and (27) as:
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Particular case: When there is (k = 0), the transitional stresses from equations (28) to (31)

becomes:
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For fully plastic state stresses, displacement and angular velocity from equations (36) to (39)
become:
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. = (43)
v (1-R)
Equations (36) to (43) are same as given by Pankaj [17].
Table 1. - Angular speed required for initial yielding and fully plastic state
Variable | Compressibility | Angular Speed Angular Percentage
Thickness of Material required for Speed increase in
initial yielding | required for | Angular speed
fully- plastic
i state 02
2 2 —L —1|x100
¢ Q; Q; o
c>| -0.5 v=0.5 (Rubber) 3.839354 7.678708 41.42136
— 0 (Incompressible 4.848732 6.857143 18.92072
M 0.4 Material) 5.810077 6.227086 3.52649
?f -0.5 v=0.333 2.563482 7.678708 73.07285
" 0 (Copper & Brass) 3.237431 6.857143 45.53633
e 0.4 (Compressible 3.879306 6.227086 26.69673
Material)

-0.5 v=0.29 2.33751 7.678708 81.24554

0 (Steel) 2.952049 6.857143 52.40872

0.4 (Compressible 3.537343 6.227086 32.67951

Material

4. NUMERICAL ILLUSTRATION AND DISCUSSION

For calculating the stresses, angular speed and displacement based on the above analysis, the
following values have been taken as v = 0.5 (Rubber or incompressible material), v = 0.333
(Copper and Brass or compressible material), v =0.29 (Steel or compressible material) and k = -
0.5, 0, 0.4 respectively. Curves have been drawn in Fig. 2 between angular speed required for
initial yielding and various radii ratios for v = 0.5, 0.333, 0.29 at k = -0.5, 0, 0.4. It has been
observed that in the absence of thickness the rotating disc made of incompressible material e.g.
Rubber with inclusion require higher angular speed to yield at the internal surface as compare to
disc made of compressible material e.g. Copper, Brass and Steel and a much higher angular speed
is required to yield with the increase in radii ratio. With the effect of variation thickness, higher
angular speed is required to yield at the internal surface. It can also be seen from Table- I, that for
compressible material higher percentage increased in angular speed is required to become fully
plastic as compared to rotating disc made of incompressible material. In Fig. 3(a), 3(b) and 4,
curves have been drawn for stresses and displacement with respect to radii ratio R = /b for elastic-
plastic transition and fully plastic state respectively. It has been observed that the radial stress is
maximum at the internal surface. With the effect of variable thickness it increases the value of
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radial and circumferential stress at the internal surface for transitional state whereas from fig.4, it
can been seen that rotating disc having variable thickness increases the values of radial and
circumferential stress at the internal surface for fully-plastic state.
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Fig. 2 - Angular speed required for initial yie lding at the internal surface of the rotating disc
with rigid inclusion having variable thickness k =-0.5, 0, 0.4 along the radii ratio Ro =alb
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Fig. 3a - Stresses and Displacement at the elastic-plastic Transition state.
Meaning of
k =0 Sigma 1= o,
25 Sigm? theta= oz
u = displacement
2
——y=0.29,sigma theta
——v=0.29, sigmar
15
@ ——vy=0.29,u
@ —+—v=0.333, sigmatheta
@ 1 v=0.333,sigmar
——v=0.333,u
0.5 ~—m—v=0.5, sigma theta
—dr—v=0.5sigmar
’4 v=0.5,u
0 e
4] 0.2 0.4 0.6 0.8 1 1.2

R=r/b

Fig. 3b (1) - Stresses and Displacement at the elastic-plastic Transition state
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Fig. 3b (2) - Stresses and Displacement at the elastic-plastic Transition state
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Fig. 4 - Stresses and displacement for fully plastic state
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5. CONCLUSION

It has been observed that in the absence of thickness, rotating disc with inclusion and made of
compressible material yields at the internal surface at a lesser angular speed as compared to a
rotating disc made of incompressible material whereas it requires a higher percentage increase in
angular speed to become fully plastic. With the effect of variation thickness, higher angular speed
is required to yield at the internal surface. It has been observed that the radial stress is maximal at
the internal surface. With the effect of variable thickness it increase the value of radial and
circumferential stress at the internal surface for transitional state whereas it can be seen that
rotating disc having variable thickness increases the values of radial and circumferential stress at
the internal surface for fully-plastic state.
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NAPONI U TANKOM ROTIRAJUCEM DISKU
PROMENLJIVE DEBLJINE SA KRUTIM VRATILOM

Pankaj Thakur

Department of Mathematics, Indus International University Bathu Una, Himachal Pradesh -
174301 (India)

REZIME

Naponi u tankom rotirajucem disku promenljive debljine sa krutim vratilom izvedeni su za elasto-
plasticno i potpuno plasticno stanje pomocu Seth-ove tranzicione teorije. Dobijeni rezultati su
diskutovani i graficki prezentovani. Zakljuceno je da, kada se zanemari debljina, tecenje
materijala (na unutrasnjoj povrsini) u slucaju rotirajuceg diska izradenog od stisljivog materijala
npr bakra, mesinga i Celika javija se pri manjoj vrednosti ugaone brzine u odnosu na rotirajuci
disk napravljen od nestisljivog materijala npr. gume, dok istovremeno zahteva veci procenat
povecanja ugaone brzine za prelazak u potpuno plasticno stanje. Ukljucivanjem efekta debljine
potrebna je veca ugaona brzina za pocetak tecenja materijala na unutrasnjoj povrsini. Maksimalni
radijalni napon javlja se na a unutrasnjoj povrsini. Takode sa povecanjem debljine povecavaju se
vrednost radijalnog i obimnog napona na unutrasnjoj povrsini za oba naponska tanja (prelno i
cisto plasticno)

Kljuéne reci: naponi, pomeranja, rotirajuci disk, uugaona brzina, inkluzija, debljina
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