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ABSTRACT 

 
Stresses for the elastic-plastic transition and fully plastic state have been derived for a thin 
rotating disc with rigid shaft having variable thickness by using Seth’s Transition theory and 
results have been discussed and depicted graphically. It has been observed that in the absence of 
thickness, rotating disc with inclusion and made of compressible material e.g. Copper, Brass and 
Steel,  yields at the internal surface at a lesser angular speed as compared to a rotating disc made 
of incompressible material e.g. rubber whereas it requires a higher percentage increase in 
angular speed to become fully plastic. With the effect of variation thickness, higher angular speed 
is required to yield at the internal surface. It has been observed that the radial stress is maximum 
at the internal surface. With the effect of variable thickness it increases the value of radial and 
circumferential stress at the internal surface for transitional state, whereas it can be seen that 
rotating disc having variable thickness increases the values of radial and circumferential stress at 
the internal surface for fully-plastic state. 
Key words: stresses, displacement, rotating disc, angular speed, Inclusion, thickness  
 
 
1. INTRODUCTION 
 
Rotating discs form an essential part of the design of rotating machinery, namely rotors, turbines, 
compressors, flywheel and computer’s disc drive etc. The analysis of thin rotating discs made of 
isotropic material has been discussed extensively by Timoshenko and Goodier [1] in the elastic 
range and by Chakrabarty [2] and Hropertiesfor the plastic range.Their solutionfor the problem of 
fully plastic state does not involve the plane stress condition, that is to say, we can obtain the same 
stresses and angular velocity required by the disc to become fully plastic without using the plane 
stress condition (i.e. =0). Gupta and Shukla [4] obtained a different solution for the fully plastic 
state by using Seth’s transition theory and plane stress condition. This theory [5] does not required 
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any assumptions like an yield condition, incompressibility condition and thus poses and solves a 
more general problem from which cases pertaining to the above assumptions can be worked out. It 
utilizes the concept of generalized strain measure and asymptotic solution at critical points or 
turning points of the differential equations defining the deformed field and has been successfully 
applied to a large number of   problems [4,10-15, 17- 33]. 
Seth [6] has defined the generalized principal strain measure as, 
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where ‘n’ is the measure and  .is the Almansi finite strain components. For n =-2, -1,0, 1, 2 it gives 
Cauchy, Green Hencky, Swainger and Almansi measures, respectively.  
Here, Analysis of Elastic-Plastic Transition stresses in a thin Rotating Disc having variable 
thickness with rigid shaft is investigated by Seth’s transition theory. The thickness of disc is 
assumed to vary along the radius in the form: 

( ) kbrhh −= /0  (2) 

Where h0 is the thickness at r = b and k is the thickness parameter. Result obtained have been 
numerically and depicted graphically. 
 
 
2. GOVERNING EQUATIONS 
 
We consider a thin disc of variable thickness with central bore of radius a and external radius b. 
The annular disc is mounted on a rigid shaft. The disc is rotating with angular speed  of gradually 
increasing magnitude around axis perpendicular to its plane and passed through the center as 
shown in Figure 1. The thickness h of disc is assumed to be vary radially and is taken sufficiently 
small so that the disc is effectively in a state of plane stress, that is, the axial stress is zero. 
The displacement components in cylindrical polar co- ordinate are given by [6]. 

( )β−= 1ru , 0=v , dzw =  (3) 

whereβ is function of 22 yxr +=  only and d is a constant. 
The finite strain components are given by Seth [6] as: 
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where drdββ =′  
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Fig. 1 - Geometry of Rotating Disc. 
 

Substituting equation (4) in equation (1), the 
generalized components of strain are: 
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Where drdββ =′  
 
The stress –strain relations for isotropic material are 
given by [16] 

ijijij eIT μλδ 21 += ( )3,2,1, =ji  (6) 

where ijT and ije are the stresses and strain 

components, λ  and μ  are lame’s constants and 

kkeI =1  is the first strain invariant, ijδ  is  the  
Kroncecker’sdelta. 
 

Equations (6) for this problem become, 
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Using equation (4) in equation (6), the strain components in terms of stresses are obtained as [16]: 
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And 0=== zrzr eee θθ  

Where: ( )
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Substituting equation (5) in equation (7), we get the stress as:  
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Where Pr ββ =′ . 
Equations of equilibrium are all satisfied except 

( ) 022 =+− hrhTrhT
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d

rr ρωθθ  
(10)

 

where ρ  is the density of the material of the rotating disc. 
Using equation (9) and (10), we get a non- linear differential equation in β  as: 
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where drdββ =′ ( P is function of β and β is function of r only). 
From equation (11), the transition points of β  are 1−=P  and ∞± .The boundary conditions 
are: 
u = 0 at r = a and 0=rrT  at r = b (12) 
 
3. SOLUTION THROUGH THE PRINCIPAL STRESSES 
 
It has been shown[4, 10-15, 17-33] that the asymptotic solution through the principal stress leads 
from elastic state to plastic state at transition point  ±∞→P , we define the transition function R 
as: 
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Taking the logarithmic differentiation of equation (13) with respect to r and using equation (11),we 
get: 
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Taking the asymptotic value of equation (14) at ±∞→P  and integrating, we get  

h
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where 1A  is a constant of integration. 
From equation (13) and (15) and using equation (2),we have 
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Substituting equation (16) in equation (10) using equation (2) and integrating, we get: 
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whereB1 is a constant of integration. 
Substituting equations (16) and (17) in second equation of equation (8), we get 
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Substituting equation (18) in equation (3), we get 
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232μ  is the Young’s modulus. 

Using boundary condition (12) in equations (16) and (17), we get 
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Substituting equations (20) and (21) in equations (16), (17), and (19) respectively, we get the 
transitional stresses and displacement as 
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From equation (25), it is seen that θθTTrr −  is maximum at the internal surface (that is at r = 
a), therefore yielding of the disc takes place at the internal surface of the disc and equation (25) 
can be written as: 
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The angular speed necessary for initial yielding is given by: 

( )
( ) ( )

ν

ν
ρωΩ ⎟

⎠
⎞

⎜
⎝
⎛

−−

−
==

−− a
b

aba
abk

Y
b

kkk
i

i 33

222
2

1
3  (26) 

And 
ρ

ω Y
b

i
i

Ω
=  

The disc becomes fully plastic ( )0→C at the external surface and equation (25) becomes: 
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The angular speed required for fully plastic state is given by: 
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We introduce the following non-dimensional components: 
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Elastic-plastic transitional stresses, angular speed and displacement from equations (22), (23), (26) 
and (24) in non-dimensional form become: 
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Stresses, displacement and angular speed for fully plastic state ( )0→C , are obtained from 
equations (28), (29),(31) and (27) as: 
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Particular case: When there is ( )0=k , the transitional stresses from equations (28) to (31) 
becomes: 
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For fully plastic state stresses, displacement and angular velocity from equations (36) to (39) 
become: 
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Equations (36) to (43) are same as given by Pankaj [17]. 
 
Table 1. - Angular speed required for initial yielding and fully plastic state 
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4. NUMERICAL ILLUSTRATION AND DISCUSSION 
 
For calculating the stresses, angular speed and displacement based on the above analysis, the 
following values have been taken as v = 0.5 (Rubber or incompressible material), v = 0.333 
(Copper and Brass or compressible material), v =0.29 (Steel or compressible material) and k = -
0.5, 0, 0.4 respectively. Curves have been drawn in Fig. 2 between angular speed required for 
initial yielding and various radii ratios for v = 0.5, 0.333, 0.29 at k = -0.5, 0, 0.4. It has been 
observed that in the absence of thickness the rotating  disc made of incompressible material e.g. 
Rubber with inclusion require higher angular speed to yield at the internal surface as compare to 
disc made of compressible material e.g. Copper, Brass and Steel and a much higher angular speed 
is required to yield with the increase in radii ratio. With the effect of variation thickness, higher 
angular speed is required to yield at the internal surface. It can also be seen from Table- I, that for 
compressible material higher percentage increased in angular speed is required to become fully 
plastic as compared to rotating disc made of incompressible material.  In Fig. 3(a), 3(b) and 4, 
curves have been drawn for stresses and displacement with respect to radii ratio R = r/b for elastic-
plastic transition and fully plastic state respectively. It has been observed that the radial stress is 
maximum at the internal surface. With the effect of variable thickness it increases the value of 
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radial and circumferential stress at the internal surface for transitional state whereas from fig.4, it 
can been seen that rotating disc having variable thickness increases the values of radial and 
circumferential stress at the internal surface for fully-plastic state. 
 
 

 

 

 
 
Fig. 2 - Angular speed required for initial yie lding at the internal surface of the rotating disc 
with rigid inclusion having variable thickness k = -0.5, 0, 0.4 along the radii ratio baR /0 =  
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Fig. 3a - Stresses and Displacement at the elastic-plastic Transition state. 

 

 
Fig. 3b (1) - Stresses and Displacement at the elastic-plastic Transition state 
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Fig. 3b (2) - Stresses and Displacement at the elastic-plastic Transition state 

 

 
Fig. 4 - Stresses and displacement for fully plastic state 
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5. CONCLUSION 
 
It has been observed that in the absence of thickness, rotating disc with inclusion and made of 
compressible material yields at the internal surface at a lesser angular speed as compared to a 
rotating disc made of incompressible material whereas it requires a higher percentage increase in 
angular speed to become fully plastic. With the effect of variation thickness, higher angular speed 
is required to yield at the internal surface. It has been observed that the radial stress is maximal at 
the internal surface. With the effect of variable thickness it increase the value of radial and 
circumferential stress at the internal surface for transitional state whereas it can be seen that 
rotating disc having variable thickness increases the values of radial and circumferential stress at 
the internal surface for fully-plastic state. 
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REZIME 

 
 
Naponi u tankom rotirajućem disku promenljive debljine sa krutim vratilom izvedeni su za elasto-
plastično i potpuno plastično stanje pomoću Seth-ove tranzicione teorije. Dobijeni rezultati su 
diskutovani i grafički prezentovani. Zaključeno je da, kada se zanemari debljina, tečenje 
materijala (na unutrašnjoj površini) u slučaju rotirajućeg diska izrađenog od stišljivog materijala 
npr bakra, mesinga i čelika javlja se pri manjoj vrednosti ugaone brzine u odnosu na rotirajući 
disk napravljen od nestišljivog materijala npr. gume, dok istovremeno zahteva veći procenat 
povećanja ugaone brzine za prelazak u potpuno plastično stanje. Uključivanjem efekta debljine 
potrebna je veća ugaona brzina za početak tečenja materijala na unutrašnjoj površini. Maksimalni 
radijalni napon javlja se na a unutrašnjoj površini. Takođe sa povećanjem debljine povećavaju se 
vrednost radijalnog i obimnog napona na unutrašnjoj površini za oba naponska tanja (prelno i 
čisto plastično) 
Ključne reči: naponi, pomeranja, rotirajući disk, uugaona brzina, inkluzija, debljina 


